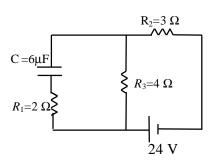
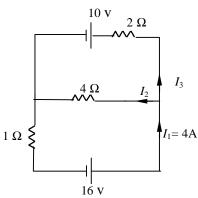

PHYSB 1301 SECOND MID EXAM.

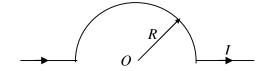
DEPT. OF PHYSICS TIME:60 min.

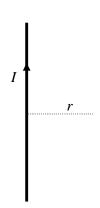
DATE:19-5-2009						
رس:	المد	رقمه: Part II			يم الطالب:	
Part I					Total	
() 4=	Q1	Q2	Q3	Q4	_	
PART I: choose t	the correct answ	ver			(15×4=60 pts)	
1) When a dielectric i	material is inserted	inside a capa	citor			
a) the capacitance incc) the capacitance do		b) the capacitance decreases.d) the capacitor breakes down.				
2) The unit of the die	lectric constant κ i	S				
a) Farad	b) F/C	C c) F/V		d) non of them		
3) The direction of cu	arrent is the same a	s the directio	n of motion	of		
a) negative charges	b) positive charg	positive charges c) both of the		d) non of them		
4) The resistance of a	wire doesn't depe	end on				
a) its length	b) its cross-sect	s cross-sectional ares c) its		aterial	d) its current	
5) A light bulb is mar	ked 60 W and 120	V. Its resista	ince is			
a) 60 Ω	b) 120 Ω	c) 18	c) 180 Ω		d) 240 Ω	
6) The unit of the elec	ctromotive force (e	emf) is				
a) Ω	b) V	c) N		d) J		
7) The unit of the cur	rent density J is					
a) A	b) A/m	c) A/	c) A/m ²		d) A/m ³	
8) Two 20- Ω resistor. The current in each re-		parallel and	the combina	tion is conr	nected to a 20-V battery	


a) 0.25 A b) 1.0 A c) 4.0 A d) 5.0 A


PART II: Solve the following problems

 $(4\times10=40 \text{ pts})$


 $\mathbf{Q1}$) Consider the RC circuit shown. Find the maximum charge in the capacitor.


Q2) Consider the circuit shwon in the figure. Calculate the currents I_2 , and I_3 .

Q6) consider the current-carrying wire shown, with the curved portion is a semicircle of radius *R*. Find the magnetic field at point *O*, the center of the circle.

Q7) A long wire carries a uniform current I as in the figure. Calculate the magnetic field at a distance r from the wire.

