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CHAPTER 11 
 

11.1 First, the decomposition is implemented as 
 

e2 = 0.4/0.8 = 0.5 

f2 = 0.8 0.5)(0.4) = 0.6 

e3 = 0.4/0.6 = 0.66667 

f3 = 0.8 0.66667)(0.4) = 0.53333 
 
Transformed system is 

 




















53333.066667.00
4.06.05.0

04.08.0
 

 
which is decomposed as 

 


















166667.00
015.0
001

][L   


















53333.000
4.06.00

04.08.0
][U  

 

The right hand side becomes 

 
r1 = 41 

r2 = 25 0.5)(41) = 45.5 

r3 = 105 0.66667)45.5 = 135.3333 
 

which can be used in conjunction with the [U] matrix to perform back substitution and obtain 

the solution 

 
x3 = 135.3333/0.53333 = 253.75 

x2 = (45.5 – (–0.4)253.75)/0.6 = 245 

x1 = (41 0.4)245)/0.8 = 173.75 
 

11.2 As in Example 11.1, the LU decomposition is 
 
























1717.0

1645.0

149.0

1

][L   

























323.1

1395.1

1550.1

104.2

][U  

 

To compute the first column of the inverse 

 



















0
0
0
1

}]{[ DL  
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Solving this gives  

 



















226775.0
316296.0
490196.0

1

}{D  

 

Back substitution, [U]{X} = {D}, can then be implemented to give to first column of the 
inverse 

 



















171406.0
349667.0
541916.0
755841.0

}{X  

 

For the second column 

 



















0
0
1
0

}]{[ DL  

 

which leads to 
 



















349667.0
713322.0
105509.1
541916.0

}{X  

 

For the third column 

 



















0
1
0
0

}]{[ DL  

 

which leads to 
 



















541916.0
105509.1
713322.0
349667.0

}{X  

 
For the fourth column 

 



















1
0
0
0

}]{[ DL  
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which leads to 
 



















755841.0
541916.0
349667.0
171406.0

}{X  

 
Therefore, the matrix inverse is 

 



















755841.0541916.0349667.0171406.0
541916.0105509.1713322.0349667.0
349667.0713322.0105509.1541916.0
171406.0349667.0541916.0755841.0

][ 1A  

 

11.3 First, the decomposition is implemented as 

 

e2 = 0.020875/2.01475 = 0.01036 
f2 = 2.014534 

e3 = 0.01036 
f3 = 2.014534 

e4 = 0.01036 
f4 = 2.014534 

 

Transformed system is 
 

























014534.201036.0

02875.0014534.201036.0

02875.0014534.201036.0

02875.001475.2

 

 

which is decomposed as 

 
























101036.0

101036.0

101036.0

1

][L  

 

























014534.2

02875.0014534.2

02875.0014534.2

02875.001475.2

][U  

 

Forward substitution yields 
 

r1 = 4.175 

r2 = 0.043258 
r3 = 0.000448 
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r4 = 2.087505 

 
Back substitution 

 

x4 = 1.036222 

x3 = 0.01096 
x2 = 0.021586 

x1 = 2.072441 

 
11.4 We can use MATLAB to verify the results of Example 11.2, 

 
>> L=[2.4495 0 0;6.1237 4.1833 0;22.454 20.916 6.1106] 

 

L = 

    2.4495         0         0 

    6.1237    4.1833         0 

   22.4540   20.9160    6.1106 

 

>> L*L' 

 

ans = 

    6.0001   15.0000   55.0011 

   15.0000   54.9997  224.9995 

   55.0011  224.9995  979.0006 

 

11.5 

828427.2811 l  

 

071068.7
828427.2

20
21 l  

 

477226.5071068.780 2
22 l  

 

303301.5
828427.2

15
31 l  

 

282177.2
477226.5

)303301.5(071068.750
32 


l  

 

163978.5282177.2303301.560 22
33 l  

 

Thus, the Cholesky decomposition is 

 
















163978.5282177.2303301.5

477226.5071068.7

828427.2

][L  

 

11.6 
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44949.2611 l  

 

123724.6
44949.2

15
21 l  

 

1833.4123724.655 2
22 l  

 

45366.22
44949.2

55
31 l  

 

9165.20
1833.4

)45366.22(123724.6225
32 


l  

 

110101.69165.2045366.22979 22
33 l  

 
Thus, the Cholesky decomposition is 

 
















110101.69165.2045366.22

1833.4123724.6

44949.2

][L  

 

The solution can then be generated by first using forward substitution to modify the right-

hand-side vector, 
 

}{}]{[ BDL   

 

which can be solved for 

 














36915.11
78923.48
29869.62

}{D  

 

Then, we can use back substitution to determine the final solution, 

 

}{}{][ DXL T   

 

which can be solved for 

 














860714.1
359286.2
478571.2

}{D  

 

11.7 (a) The first iteration can be implemented as 

 



  6   

 

PROPRIETARY MATERIAL.  © The McGraw-Hill Companies, Inc.  All rights reserved.  No part of this Manual 
may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the 
publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their 
individual course preparation.  If you are a student using this Manual, you are using it without permission. 

25.51
8.0

)0(4.041

8.0

4.041 2
1 







x
x  

 

875.56
8.0

)0(4.0)25.51(4.025

8.0

4.04.025 31
2 







xx
x  

 

6875.159
8.0

)875.56(4.0105

8.0

4.0105 2
3 







x
x  

 

Second iteration: 
 

6875.79
8.0

)875.56(4.041
1 


x  

 

9375.150
8.0

)6875.159(4.0)6875.79(4.025
2 


x  

 

7188.206
8.0

)9375.150(4.0105
3 


x  

 

The error estimates can be computed as 
 

%69.35%100
6875.79

25.516875.79
1, 


a  

 

%32.62%100
9375.150

875.569375.150
2, 


a  

 

%75.22%100
7188.206

6875.1597188.206
3, 


a  

 

The remainder of the calculation proceeds until all the errors fall below the stopping criterion 
of 5%. The entire computation can be summarized as 

 

iteration unknown value a maximum a 

1 x1 51.25 100.00%  

 x2 56.875 100.00%  

 x3 159.6875 100.00% 100.00% 

2 x1 79.6875 35.69%  

 x2 150.9375 62.32%  

 x3 206.7188 22.75% 62.32% 

3 x1 126.7188 37.11%  

 x2 197.9688 23.76%  

 x3 230.2344 10.21% 37.11% 

4 x1 150.2344 15.65%  

 x2 221.4844 10.62%  
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 x3 241.9922 4.86% 15.65% 

5 x1 161.9922 7.26%  

 x2 233.2422 5.04%  

 x3 247.8711 2.37% 7.26% 

6 x1 167.8711 3.50%  

 x2 239.1211 2.46%  

 x3 250.8105 1.17% 3.50% 

 

Thus, after 6 iterations, the maximum error is 3.5% and we arrive at the result: x1 = 167.8711, 

x2 = 239.1211 and x3 = 250.8105. 
 

(b) The same computation can be developed with relaxation where  = 1.2.  
 

First iteration: 

 

25.51
8.0

)0(4.041

8.0

4.041 2
1 







x
x  

 

Relaxation yields: 5.61)0(2.0)25.51(2.11 x  

 

62
8.0

)0(4.0)5.61(4.025

8.0

4.04.025 31
2 







xx
x  

 

Relaxation yields: 4.74)0(2.0)62(2.12 x  

 

45.168
8.0

)4.74(4.0105

8.0

4.0105 2
3 







x
x  

 

Relaxation yields: 14.202)0(2.0)45.168(2.13 x  

 

Second iteration: 

 

45.88
8.0

)4.74(4.041
1 


x  

 

Relaxation yields: 84.93)5.61(2.0)45.88(2.11 x  

 

24.179
8.0

)14.202(4.0)84.93(4.025
2 


x  

 

Relaxation yields: 208.200)4.74(2.0)24.179(2.12 x  

 

354.231
8.0

)208.200(4.0105
3 


x  

 

Relaxation yields: 1968.237)14.202(2.0)354.231(2.13 x  
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The error estimates can be computed as 
 

%46.34%100
84.93

5.6184.93
1, 


a  

 

%84.62%100
208.200

4.74208.200
2, 


a  

 

%78.14%100
1968.237

14.2021968.237
3, 


a  

 

The remainder of the calculation proceeds until all the errors fall below the stopping criterion 
of 5%. The entire computation can be summarized as 

 

iteration unknown value relaxation a maximum a 

1 x1 51.25 61.5 100.00%  

 x2 62 74.4 100.00%  

 x3 168.45 202.14 100.00% 100.000% 

2 x1 88.45 93.84 34.46%  

 x2 179.24 200.208 62.84%  

 x3 231.354 237.1968 14.78% 62.839% 

3 x1 151.354 162.8568 42.38%  

 x2 231.2768 237.49056 15.70%  

 x3 249.99528 252.55498 6.08% 42.379% 

4 x1 169.99528 171.42298 5.00%  

 x2 243.23898 244.38866 2.82%  

 x3 253.44433 253.6222 0.42% 4.997% 

 

Thus, relaxation speeds up convergence. After 6 iterations, the maximum error is 4.997% and 

we arrive at the result: x1 = 171.423, x2 = 244.389 and x3 = 253.622. 
 

11.8 The first iteration can be implemented as 

 

3333.253
15

0)0(33800

15

33800 32
1 







cc
c  

 

8889.108
18

)0(6)3333.253(31200

18

631200 31
2 







cc
c  

 

3519.289
12

8889.108)3333.253(42350

12

42350 21
3 







cc
c  

 

Second iteration: 
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4012.294
15

3519.289)8889.108(33800

15

33800 32
1 







cc
c  

 

1842.212
18

)3519.289(6)4012.294(31200

18

631200 31
2 







cc
c  

 

6491.311
12

1842.212)4012.294(42350

12

42350 21
3 







cc
c  

 

The error estimates can be computed as 
 

%95.13%100
4012.294

3333.2534012.294
1, 


a  

 

%68.48%100
1842.212

8889.1081842.212
2, 


a  

 

%15.7%100
6491.311

3519.2896491.311
3, 


a  

 

The remainder of the calculation proceeds until all the errors fall below the stopping criterion 
of 5%. The entire computation can be summarized as 

 

iteration unknown value a maximum a 

1 c1 253.3333 100.00%  

 c2 108.8889 100.00%  

 c3 289.3519 100.00% 100.00% 

2 c1 294.4012 13.95%  

 c2 212.1842 48.68%  

 c3 311.6491 7.15% 48.68% 

3 c1 316.5468 7.00%  

 c2 223.3075 4.98%  

 c3 319.9579 2.60% 7.00% 

4 c1 319.3254 0.87%  

 c2 226.5402 1.43%  

 c3 321.1535 0.37% 1.43% 

 

Thus, after 4 iterations, the maximum error is 1.43% and we arrive at the result: c1 = 

319.3254, c2 = 226.5402 and c3 = 321.1535. 
 

11.9 The first iteration can be implemented as 

 

3333.253
15

0)0(33800

15

33800 32
1 







cc
c  
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6667.66
18

)0(6)0(31200

18

631200 31
2 







cc
c  

 

8333.195
12

0)0(42350

12

42350 21
3 







cc
c  

 

Second iteration: 

 

7222.279
15

8333.195)6667.66(33800

15

33800 32
1 







cc
c  

 

1667.174
18

)8333.195(6)3333.253(31200

18

631200 31
2 







cc
c  

 

8333.285
12

6667.66)3333.253(42350

12

42350 21
3 







cc
c  

 

The error estimates can be computed as 

 

%43.9%100
7222.279

3333.2537222.279
1, 


a  

 

%72.61%100
1667.174

6667.661667.174
2, 


a  

 

%49.31%100
8333.285

8333.1958333.285
3, 


a  

 

The remainder of the calculation proceeds until all the errors fall below the stopping criterion 

of 5%. The entire computation can be summarized as 
 

iteration unknown value a maximum a 

1 c1 253.3333 100.00%  

 c2 66.66667 100.00%  

 c3 195.8333 100.00% 100.00% 

2 c1 279.7222 9.43%  

 c2 174.1667 61.72%  

 c3 285.8333 31.49% 61.72% 

3 c1 307.2222 8.95%  

 c2 208.5648 16.49%  

 c3 303.588 5.85% 16.49% 

4 c1 315.2855 2.56%  

 c2 219.0664 4.79%  

 c3 315.6211 3.81% 4.79% 
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Thus, after 4 iterations, the maximum error is 4.79% and we arrive at the result: c1 = 

315.5402, c2 = 219.0664 and c3 = 315.6211. 
 

11.10 The first iteration can be implemented as 

 

7.2
10

0)0(227

10

227 32
1 







xx
x  

 

9.8
6

)0(2)7.2(35.61

6

235.61 31
2 











xx
x  

 

62.6
5

9.8)7.2(5.21

5

5.21 21
3 







xx
x  

 

Second iteration: 

 

258.0
10

62.6)9.8(227
1 


x  

 

914333.7
6

)62.6(2)258.0(35.61
2 




x  

 

934467.5
5

914333.7)258.0(5.21
3 


x  

 

The error estimates can be computed as 

 

%947%100
258.0

7.2258.0
1, 


a  

 

%45.12%100
914333.7

9.8914333.7
2, 


a  

 

%55.11%100
934467.5

)62.6(934467.5
3, 




a  

 

The remainder of the calculation proceeds until all the errors fall below the stopping criterion 

of 5%. The entire computation can be summarized as 
 

iteration unknown value a maximum a 

1 x1 2.7 100.00%  

 x2 8.9 100.00%  

 x3 -6.62 100.00% 100% 

2 x1 0.258 946.51%  

 x2 7.914333 12.45%  

 x3 -5.93447 11.55% 946% 
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3 x1 0.523687 50.73%  

 x2 8.010001 1.19%  

 x3 -6.00674 1.20% 50.73% 

4 x1 0.497326 5.30%  

 x2 7.999091 0.14%  

 x3 -5.99928 0.12% 5.30% 

5 x1 0.500253 0.59%  

 x2 8.000112 0.01%  

 x3 -6.00007 0.01% 0.59% 

 
Thus, after 5 iterations, the maximum error is 0.59% and we arrive at the result: x1 = 

0.500253, x2 = 8.000112 and x3 = 6.00007. 
 

11.11 The equations should first be rearranged so that they are diagonally dominant, 

 

50123

4096

36

321

321

321







xxx

xxx

xxx

 

 

Each can be solved for the unknown on the diagonal as 

 

12

350

9

640

6

3

21
3

31
2

32
1

xx
x

xx
x

xx
x










 

 

(a) The first iteration can be implemented as 

 

949074.3
12

11111.4)5.0(350

11111.4
9

0)5.0(640

5.0
6

003

3

2

1
















x

x

x

 

 

Second iteration: 
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396112.4
12

776749.2)843364.1(350

776749.2
9

949074.3)843364.1(640

843364.1
6

949074.311111.43

3

2

1
















x

x

x

 

 
The error estimates can be computed as 

 

%88.72%100
843364.1

5.0843364.1
1, 


a  

 

%05.48%100
776749.2

11111.4776749.2
2, 


a  

 

%17.10%100
396112.4

949074.3396112.4
3, 


a  

 

The remainder of the calculation proceeds until all the errors fall below the stopping criterion 

of 5%. The entire computation can be summarized as 

 

iteration unknown value a maximum a 

1 x1 0.5 100.00%  

 x2 4.111111 100.00%  

 x3 3.949074 100.00% 100.00% 

2 x1 1.843364 72.88%  

 x2 2.776749 48.05%  

 x3 4.396112 10.17% 72.88% 

3 x1 1.695477 8.72%  

 x2 2.82567 1.73%  

 x3 4.355063 0.94% 8.72% 

4 x1 1.696789 0.08%  

 x2 2.829356 0.13%  

 x3 4.355084 0.00% 0.13% 

 

Thus, after 4 iterations, the maximum error is 0.13% and we arrive at the result: x1 = 
1.696789, x2 = 2.829356 and x3 = 4.355084. 

 

(b) First iteration: To start, assume x1 = x2 = x3 = 0 
 

5.0
6

003
1 


newx  

 

Apply relaxation 
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475.00)95.01()5.0(95.01 x  

 

12778.4
9

0)475.0(640
2 


newx  

 

92139.30)95.01()12778.4(95.02 x  

 

95863.3
12

92139.3)475.0(350
3 


newx  

 

76070.30)95.01()95863.3(95.03 x  

 

Note that error estimates are not made on the first iteration, because all errors will be 100%. 

 

Second iteration:  
 

78035.1
6

76070.392139.33
1 


newx  

 

71508.1)475.0)(95.01()78035.1(95.01 x  

 

At this point, an error estimate can be made 

 

%3.72%100
71508.1

475.071508.1
1, 


a  

 

Because this error exceeds the stopping criterion, it will not be necessary to compute error 

estimates for the remainder of this iteration. 

 

88320.2
9

76070.3)71508.1(640
2 


newx  

 

93511.292139.3)95.01()88320.2(95.02 x  

 

35084.4
12

93511.2)71508.1(350
3 


newx  

 

32134.476070.3)95.01()35084.4(95.03 x  

 

The computations can be continued for one more iteration. The entire calculation is 

summarized in the following table. 
 

iteration x1 x1r a1 x2 x2r a2 x3 x3r a3 

1 0.50000 0.47500 100.0% 4.12778 3.92139 100.0% 3.95863 3.76070 100.0% 

2 1.78035 1.71508 72.3% 2.88320 2.93511 33.6% 4.35084 4.32134 13.0% 

3 1.70941 1.70969 0.3% 2.82450 2.83003 3.7% 4.35825 4.35641 0.8% 
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After 3 iterations, the approximate errors fall below the stopping criterion with the final 
result: x1 = 1.70969, x2 = 2.82450 and x3 = 4.35641. Note that the exact solution is x1 = 

1.69737, x2 = 2.82895 and x3 = 4.35526 

 

11.12 The equations must first be rearranged so that they are diagonally dominant 
 

3473

3862

2028

321

321

321







xxx

xxx

xxx

 

 

(a) The first iteration can be implemented as 

 

5.2
8

)0(2020

8

220 32
1 











xx
x  

 

166667.7
6

0)5.2(238

6

238 31
2 











xx
x  

 

761905.2
7

166667.7)5.2(334

7

334 21
3 







xx
x  

 

Second iteration: 

 

08631.4
8

)761905.2(2166667.720
1 




x  

 

155754.8
6

)761905.2()08631.4(238

6

238 31
2 











xx
x  

 

94076.1
7

155754.8)08631.4(334

7

334 21
3 







xx
x  

 

The error estimates can be computed as 

 

%82.38%100
08631.4

5.208631.4
1, 


a  

 

%13.12%100
155754.8

166667.7155754.8
2, 


a  

 

%31.42%100
94076.1

)761905.2(94076.1
3, 




a  
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The remainder of the calculation proceeds until all the errors fall below the stopping criterion 

of 5%. The entire computation can be summarized as 
 

iteration unknown value a maximum a 

0 x1 0   

 x2 0   

 x3 0   

1 x1 2.5 100.00%  

 x2 7.166667 100.00%  

 x3 -2.7619 100.00% 100.00% 

2 x1 4.08631 38.82%  

 x2 8.155754 12.13%  

 x3 -1.94076 42.31% 42.31% 

3 x1 4.004659 2.04%  

 x2 7.99168 2.05%  

 x3 -1.99919 2.92% 2.92% 

 
Thus, after 3 iterations, the maximum error is 2.92% and we arrive at the result: x1 = 

4.004659, x2 = 7.99168 and x3 = 1.99919. 
 

(b) The same computation can be developed with relaxation where  = 1.2.  
 

First iteration: 

 

5.2
8

)0(2020

8

220 32
1 











xx
x  

 

Relaxation yields: 3)0(2.0)5.2(2.11 x  

 

333333.7
6

0)3(238

6

238 31
2 











xx
x  

 

Relaxation yields: 8.8)0(2.0)333333.7(2.12 x  

 

3142857.2
7

8.8)3(334

7

334 21
3 







xx
x  

 

Relaxation yields: 7771429.2)0(2.0)3142857.2(2.13 x  

 

Second iteration: 

 

2942857.4
8

)7771429.2(28.820

8

220 32
1 











xx
x  

 

Relaxation yields: 5531429.4)3(2.0)2942857.4(2.11 x  
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3139048.8
6

7771429.2)5531429.4(238

6

238 31
2 











xx
x  

 

Relaxation yields: 2166857.8)8.8(2.0)3139048.8(2.12 x  

 

7319837.1
7

2166857.8)5531429.4(334

7

334 21
3 







xx
x  

 

Relaxation yields: 5229518.1)7771429.2(2.0)7319837.1(2.13 x  

 

The error estimates can be computed as 

 

%11.34%100
5531429.4

35531429.4
1, 


a  

 

%1.7%100
2166857.8

8.82166857.8
2, 


a  

 

%35.82%100
5229518.1

)7771429.2(5229518.1
3, 




a  

 

The remainder of the calculation proceeds until all the errors fall below the stopping criterion 
of 5%. The entire computation can be summarized as 

 

iteration unknown value relaxation a maximum a 

1 x1 2.5 3 100.00%  

 x2 7.3333333 8.8 100.00%  

 x3 -2.314286 -2.777143 100.00% 100.000% 

2 x1 4.2942857 4.5531429 34.11%  

 x2 8.3139048 8.2166857 7.10%  

 x3 -1.731984 -1.522952 82.35% 82.353% 

3 x1 3.9078237 3.7787598 20.49%  

 x2 7.8467453 7.7727572 5.71%  

 x3 -2.12728 -2.248146 32.26% 32.257% 

4 x1 4.0336312 4.0846055 7.49%  

 x2 8.0695595 8.12892 4.38%  

 x3 -1.945323 -1.884759 19.28% 19.280% 

5 x1 3.9873047 3.9678445 2.94%  

 x2 7.9700747 7.9383056 2.40%  

 x3 -2.022594 -2.050162 8.07% 8.068% 

6 x1 4.0048286 4.0122254 1.11%  

 x2 8.0124354 8.0272613 1.11%  

 x3 -1.990866 -1.979007 3.60% 3.595% 

 

Thus, relaxation actually seems to retard convergence. After 6 iterations, the maximum error 

is 3.595% and we arrive at the result: x1 = 4.0122254, x2 = 8.0272613 and x3 = 1.979007. 
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11.13 As shown below, for slopes of 1 and –1 the Gauss-Seidel technique will neither converge 
nor diverge but will oscillate interminably. 

 

x2

x1

u

v

 
 

11.14 As ordered, none of the sets will converge. However, if Set 1 and 2 are reordered so that 

they are diagonally dominant, they will converge on the solution of (1, 1, 1). 

 
Set 1:     9x + 3y + z   = 13 

2x + 5y – z   = 6 

6x       + 8z   = 2 
 

Set 2: 4x + 2y z   = 4 
  x + 5y  –  z   = 5 

  x +  y  + 6z  = 8 
 

At face value, because it is not strictly diagonally dominant, Set 2 would seem to be 

divergent. However, since it is very close to being diagonally dominant, a solution can be 
obtained. 

 

The third set is not diagonally dominant and will diverge for most orderings. However, the 
following arrangement will converge albeit at a very slow rate: 

 

Set 3: –3x + 4y + 5z   = 6 

          2y  –  z   = 1 
–2x +  2y – 3z  =  –3 

 

11.15 Using MATLAB: 
 

(a) The results for the first system will come out as expected. 

 
>> A=[1 4 9;4 9 16;9 16 25] 

>> B=[14 29 50]' 

>> x=A\B 

 

x = 

    1.0000 

    1.0000 

    1.0000 
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>> inv(A) 

 

ans = 

    3.8750   -5.5000    2.1250 

   -5.5000    7.0000   -2.5000 

    2.1250   -2.5000    0.8750 

 

>> cond(A,inf) 

 

ans = 

  750.0000 

 

(b) However, for the 44 system, the ill-conditioned nature of the matrix yields poor results: 
 
>> A=[1 4 9 16;4 9 16 25;9 16 25 36;16 25 36 49]; 

>> B=[30 54 86 126]'; 

>> x=A\B 

Warning: Matrix is close to singular or badly scaled. 

         Results may be inaccurate. RCOND = 3.037487e-019. 

 

x = 

    0.5496 

    2.3513 

   -0.3513 

    1.4504 

 

>> cond(A,inf) 

Warning: Matrix is close to singular or badly scaled. 

         Results may be inaccurate. RCOND = 3.037487e-019. 

> In cond at 48 

 

ans = 

  3.2922e+018 

 
Note that using other software such as Excel yields similar results. For example, the condition 

number computed with Excel is 510
17

. 
 

11.16 (a) As shown, there are 4 roots, one in each quadrant. 
 

-8

-4

0

4

8

-4 -2 0 2

f

g

(2, 4)

(0.618,3.236)

(1, 2)

(1.618, 1.236)
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(b) It might be expected that if an initial guess was within a quadrant, the result would be the 

root in the quadrant. However a sample of initial guesses spanning the range yield the 
following roots: 

 

6 (-2, -4) (-0.618,3.236) (-0.618,3.236) (1,2) (-0.618,3.236) 

3 (-0.618,3.236) (-0.618,3.236) (-0.618,3.236) (1,2) (-0.618,3.236) 

0 (1,2) (1.618, -1.236) (1.618, -1.236) (1.618, -1.236) (1.618, -1.236) 

-3 (-2, -4) (-2, -4) (1.618, -1.236) (1.618, -1.236) (1.618, -1.236) 

-6 (-2, -4) (-2, -4) (-2, -4) (1.618, -1.236) (-2, -4) 

 -6 -3 0 3 6 

 

We have highlighted the guesses that converge to the roots in their quadrants. Although some 

follow the pattern, others jump to roots that are far away. For example, the guess of (6, 0) 
jumps to the root in the first quadrant. 
 

This underscores the notion that root location techniques are highly sensitive to initial guesses 

and that open methods like the Solver can locate roots that are not in the vicinity of the initial 

guesses. 
 

11.17 Define the quantity of transistors, resistors, and computer chips as x1, x2 and x3. The system 

equations can then be defined as 
 

61032
5103

960234

321

321

321





xxx
xxx

xxx
 

 

The solution can be implemented in Excel as shown below: 
 

 
 

The following view shows the formulas that are employed to determine the inverse in cells 

A7:C9 and the solution in cells D7:D9. 
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Here is the same solution generated in MATLAB: 

 
>> A=[4 3 2;1 3 1;2 1 3]; 

>> B=[960 510 610]'; 

>> x=A\B 

 

x = 

   120 

   100 

    90 

 

In both cases, the answer is x1 = 120, x2 = 100, and x3 = 90 
 

11.18 The spectral condition number can be evaluated as 

 
>> A = hilb(10); 

>> N = cond(A) 

 

N = 

  1.6025e+013 

 
The digits of precision that could be lost due to ill-conditioning can be calculated as 

 
>> c = log10(N) 

 

c = 

   13.2048 

 

Thus, about 13 digits could be suspect. A right-hand side vector can be developed 

corresponding to a solution of ones: 

 
>> b=[sum(A(1,:)); sum(A(2,:)); sum(A(3,:)); sum(A(4,:)); sum(A(5,:)); 

sum(A(6,:)); sum(A(7,:)); sum(A(8,:)); sum(A(9,:)); sum(A(10,:))] 

 

b = 

    2.9290 

    2.0199 

    1.6032 

    1.3468 

    1.1682 

    1.0349 

    0.9307 

    0.8467 

    0.7773 

    0.7188 

 

The solution can then be generated by left division  
 

>> x = A\b 

 

x = 

    1.0000 

    1.0000 
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    1.0000 

    1.0000 

    0.9999 

    1.0003 

    0.9995 

    1.0005 

    0.9997 

    1.0001 

 
The maximum and mean errors can be computed as 

 
>> e=max(abs(x-1)) 

 

e = 

  5.3822e-004 

 

>> e=mean(abs(x-1)) 

 

e = 

  1.8662e-004 

 
Thus, some of the results are accurate to only about 3 to 4 significant digits. Because 

MATLAB represents numbers to 15 significant digits, this means that about 11 to 12 digits 

are suspect. 
 

11.19 First, the Vandermonde matrix can be set up 
 

>> x1 = 4;x2=2;x3=7;x4=10;x5=3;x6=5; 

>> A = [x1^5 x1^4 x1^3 x1^2 x1 1;x2^5 x2^4 x2^3 x2^2 x2 1;x3^5 x3^4 

x3^3 x3^2 x3 1;x4^5 x4^4 x4^3 x4^2 x4 1;x5^5 x5^4 x5^3 x5^2 x5 1;x6^5 

x6^4 x6^3 x6^2 x6 1] 

 

A = 

        1024         256          64          16           4           1 

          32          16           8           4           2           1 

       16807        2401         343          49           7           1 

      100000       10000        1000         100          10           1 

         243          81          27           9           3           1 

        3125         625         125          25           5           1 

 

The spectral condition number can be evaluated as 
 

>> N = cond(A) 

 

N = 

  1.4492e+007 

 

The digits of precision that could be lost due to ill-conditioning can be calculated as 

 
>> c = log10(N) 

 

c = 

    7.1611 
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Thus, about 7 digits might be suspect. A right-hand side vector can be developed 

corresponding to a solution of ones: 
 

>> b=[sum(A(1,:));sum(A(2,:));sum(A(3,:));sum(A(4,:));sum(A(5,:)); 

sum(A(6,:))] 

 

b = 

        1365 

          63 

       19608 

      111111 

         364 

        3906 

 
The solution can then be generated by left division  
 

>> format long 

>> x=A\b 

 

x = 

   1.00000000000000 

   0.99999999999991 

   1.00000000000075 

   0.99999999999703 

   1.00000000000542 

   0.99999999999630 

 

The maximum and mean errors can be computed as 

 
>> e = max(abs(x-1)) 

 

e = 

    5.420774940034789e-012 

 

>> e = mean(abs(x-1)) 

 

e = 

    2.154110223528960e-012 

 

Some of the results are accurate to about 12 significant digits. Because MATLAB represents 

numbers to about 15 significant digits, this means that about 3 digits are suspect. Thus, for 
this case, the condition number tends to exaggerate the impact of ill-conditioning. 

 

11.20 The flop counts for the tridiagonal algorithm in Fig. 11.2 can be determined as 
 

       mult/div add/subt 

Sub Decomp(e, f, g, n) 

Dim k As Integer 

For k = 2 To n 

  e(k) = e(k) / f(k - 1)   '(n – 1)  

  f(k) = f(k) - e(k) * g(k - 1)  '(n – 1) (n – 1)  

Next k 

End Sub 

 

Sub Substitute(e, f, g, r, n, x) 
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Dim k As Integer 

For k = 2 To n 

  r(k) = r(k) - e(k) * r(k - 1)  '(n – 1) (n – 1) 

Next k 

x(n) = r(n) / f(n)    '   1 

For k = n - 1 To 1 Step -1 

  x(k) = (r(k) - g(k) * x(k + 1)) / f(k)  '2(n – 1) (n – 1) 

Next k 

End Sub 

 

Sum =       5(n-1) + 1 (3n – 3) 

 

The multiply/divides and add/subtracts can be summed to yield 8n – 7 as opposed to n
3
/3 for 

naive Gauss elimination. Therefore, a tridiagonal solver is well worth using. 
 

1
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1 10 100
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Naive Gauss

 

 

11.21 Here is a VBA macro to obtain a solution for a tridiagonal system using the Thomas 

algorithm. It is set up to duplicate the results of Example 11.1. 

 
Option Explicit 

 

Sub TriDiag() 

Dim i As Integer, n As Integer 

Dim e(10) As Double, f(10) As Double, g(10) As Double 

Dim r(10) As Double, x(10) As Double 

n = 4 

e(2) = -1: e(3) = -1: e(4) = -1 

f(1) = 2.04: f(2) = 2.04: f(3) = 2.04: f(4) = 2.04 

g(1) = -1: g(2) = -1: g(3) = -1 

r(1) = 40.8: r(2) = 0.8: r(3) = 0.8: r(4) = 200.8 

Call Thomas(e, f, g, r, n, x) 

For i = 1 To n 

  MsgBox x(i) 

Next i 

End Sub 

 

Sub Thomas(e, f, g, r, n, x) 

Call Decomp(e, f, g, n) 

Call Substitute(e, f, g, r, n, x) 

End Sub 

 

Sub Decomp(e, f, g, n) 

Dim k As Integer 

For k = 2 To n 

  e(k) = e(k) / f(k - 1) 
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  f(k) = f(k) - e(k) * g(k - 1) 

Next k 

End Sub 

 

Sub Substitute(e, f, g, r, n, x) 

Dim k As Integer 

For k = 2 To n 

  r(k) = r(k) - e(k) * r(k - 1) 

Next k 

x(n) = r(n) / f(n) 

For k = n - 1 To 1 Step -1 

  x(k) = (r(k) - g(k) * x(k + 1)) / f(k) 

Next k 

End Sub 

 
11.22 Here is a VBA macro to obtain a solution of a symmetric system with Cholesky 

decomposition. It is set up to duplicate the results of Example 11.2. 

 
Option Explicit 

 

Sub TestChol() 

Dim i As Integer, j As Integer 

Dim n As Integer 

Dim a(10, 10) As Double 

n = 3 

a(1, 1) = 6: a(1, 2) = 15: a(1, 3) = 55 

a(2, 1) = 15: a(2, 2) = 55: a(2, 3) = 225 

a(3, 1) = 55: a(3, 2) = 225: a(3, 3) = 979 

Call Cholesky(a, n) 

'output results to worksheet 

Sheets("Sheet1").Select 

Range("a3").Select 

For i = 1 To n 

  For j = 1 To n 

    ActiveCell.Value = a(i, j) 

    ActiveCell.Offset(0, 1).Select 

  Next j 

  ActiveCell.Offset(1, -n).Select 

Next i 

Range("a3").Select 

End Sub 

 

Sub Cholesky(a, n) 

Dim i As Integer, j As Integer, k As Integer 

Dim sum As Double 

For k = 1 To n 

  For i = 1 To k - 1 

    sum = 0 

    For j = 1 To i - 1 

      sum = sum + a(i, j) * a(k, j) 

    Next j 

    a(k, i) = (a(k, i) - sum) / a(i, i) 

  Next i 

  sum = 0 

  For j = 1 To k - 1 

    sum = sum + a(k, j) ^ 2 

  Next j 

  a(k, k) = Sqr(a(k, k) - sum) 

Next k 

End Sub 
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11.23 Here is a VBA macro to obtain a solution of a linear diagonally-dominant system with the 
Gauss-Seidel method. It is set up to duplicate the results of Example 11.3. 

 

Option Explicit 

 

Sub Gausseid() 

Dim n As Integer, imax As Integer, i As Integer 

Dim a(3, 3) As Double, b(3) As Double, x(3) As Double 

Dim es As Double, lambda As Double 

n = 3 

a(1, 1) = 3: a(1, 2) = -0.1: a(1, 3) = -0.2 

a(2, 1) = 0.1: a(2, 2) = 7: a(2, 3) = -0.3 

a(3, 1) = 0.3: a(3, 2) = -0.2: a(3, 3) = 10 

b(1) = 7.85: b(2) = -19.3: b(3) = 71.4 

es = 0.1 

imax = 20 

lambda = 1# 

Call Gseid(a, b, n, x, imax, es, lambda) 

For i = 1 To n 

  MsgBox x(i) 

Next i 

End Sub 

 

Sub Gseid(a, b, n, x, imax, es, lambda) 

Dim i As Integer, j As Integer, iter As Integer, sentinel As Integer 

Dim dummy As Double, sum As Double, ea As Double, old As Double 

For i = 1 To n 

  dummy = a(i, i) 

  For j = 1 To n 

    a(i, j) = a(i, j) / dummy 

  Next j 

  b(i) = b(i) / dummy 

Next i 

For i = 1 To n 

  sum = b(i) 

  For j = 1 To n 

    If i <> j Then sum = sum - a(i, j) * x(j) 

  Next j 

  x(i) = sum 

Next i 

iter = 1 

Do 

  sentinel = 1 

  For i = 1 To n 

    old = x(i) 

    sum = b(i) 

    For j = 1 To n 

      If i <> j Then sum = sum - a(i, j) * x(j) 

    Next j 

    x(i) = lambda * sum + (1# - lambda) * old 

    If sentinel = 1 And x(i) <> 0 Then 

      ea = Abs((x(i) - old) / x(i)) * 100 

      If ea > es Then sentinel = 0 

    End If 

  Next i 

  iter = iter + 1 

  If sentinel = 1 Or iter >= imax Then Exit Do 

Loop 

End Sub 

 


