CHAPTER 11

11.1 First, the decomposition is implemented as

$$
\begin{aligned}
e_{2} & =-0.4 / 0.8=-0.5 \\
f_{2} & =0.8-(-0.5)(-0.4)=0.6 \\
e_{3} & =-0.4 / 0.6=-0.66667 \\
f_{3} & =0.8-(-0.66667)(-0.4)=0.53333
\end{aligned}
$$

Transformed system is

$$
\left[\begin{array}{ccc}
0.8 & -0.4 & 0 \\
-0.5 & 0.6 & -0.4 \\
0 & -0.66667 & 0.53333
\end{array}\right]
$$

which is decomposed as

$$
[L]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-0.5 & 1 & 0 \\
0 & -0.66667 & 1
\end{array}\right] \quad[U]=\left[\begin{array}{ccc}
0.8 & -0.4 & 0 \\
0 & 0.6 & -0.4 \\
0 & 0 & 0.53333
\end{array}\right]
$$

The right hand side becomes

$$
\begin{aligned}
& r_{1}=41 \\
& r_{2}=25-(-0.5)(41)=45.5 \\
& r_{3}=105-(-0.66667) 45.5=135.3333
\end{aligned}
$$

which can be used in conjunction with the $[U]$ matrix to perform back substitution and obtain the solution

$$
\begin{aligned}
& x_{3}=135.3333 / 0.53333=253.75 \\
& x_{2}=(45.5-(-0.4) 253.75) / 0.6=245 \\
& x_{1}=(41-(-0.4) 245) / 0.8=173.75
\end{aligned}
$$

11.2 As in Example 11.1, the $L U$ decomposition is

$$
[L]=\left[\begin{array}{cccc}
1 & & & \\
-0.49 & 1 & & \\
& -0.645 & 1 & \\
& & -0.717 & 1
\end{array}\right] \quad[U]=\left[\begin{array}{cccc}
2.04 & -1 & & \\
& 1.550 & -1 & \\
& & 1.395 & -1 \\
& & & 1.323
\end{array}\right]
$$

To compute the first column of the inverse

$$
[L]\{D\}=\left\{\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right\}
$$

Solving this gives

$$
\{D\}=\left\{\begin{array}{c}
1 \\
0.490196 \\
0.316296 \\
0.226775
\end{array}\right\}
$$

Back substitution, $[U]\{X\}=\{D\}$, can then be implemented to give to first column of the inverse

$$
\{X\}=\left\{\begin{array}{l}
0.755841 \\
0.541916 \\
0.349667 \\
0.171406
\end{array}\right\}
$$

For the second column

$$
[L]\{D\}=\left\{\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right\}
$$

which leads to
$\{X\}=\left\{\begin{array}{l}0.541916 \\ 1.105509 \\ 0.713322 \\ 0.349667\end{array}\right\}$
For the third column
$[L]\{D\}=\left\{\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right\}$
which leads to

$$
\{X\}=\left\{\begin{array}{l}
0.349667 \\
0.713322 \\
1.105509 \\
0.541916
\end{array}\right\}
$$

For the fourth column
$[L]\{D\}=\left\{\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right\}$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
which leads to
$\{X\}=\left\{\begin{array}{l}0.171406 \\ 0.349667 \\ 0.541916 \\ 0.755841\end{array}\right\}$
Therefore, the matrix inverse is
$[A]^{-1}=\left[\begin{array}{llll}0.755841 & 0.541916 & 0.349667 & 0.171406 \\ 0.541916 & 1.105509 & 0.713322 & 0.349667 \\ 0.349667 & 0.713322 & 1.105509 & 0.541916 \\ 0.171406 & 0.349667 & 0.541916 & 0.755841\end{array}\right]$
11.3 First, the decomposition is implemented as
$e_{2}=-0.020875 / 2.01475=-0.01036$
$f_{2}=2.014534$
$e_{3}=-0.01036$
$f_{3}=2.014534$
$e_{4}=-0.01036$
$f_{4}=2.014534$
Transformed system is

$$
\left[\begin{array}{cccc}
2.01475 & -0.02875 & & \\
-0.01036 & 2.014534 & -0.02875 & \\
& -0.01036 & 2.014534 & -0.02875 \\
& & -0.01036 & 2.014534
\end{array}\right]
$$

which is decomposed as

$$
\begin{aligned}
& {[L]=\left[\begin{array}{cccc}
1 & & & \\
-0.01036 & 1 & & \\
& -0.01036 & 1 & \\
& & -0.01036 & 1
\end{array}\right]} \\
& {[U]=\left[\begin{array}{cccc}
2.01475 & -0.02875 & & \\
& 2.014534 & -0.02875 & \\
& & 2.014534 & -0.02875 \\
& & & 2.014534
\end{array}\right]}
\end{aligned}
$$

Forward substitution yields

$$
\begin{aligned}
& r_{1}=4.175 \\
& r_{2}=0.043258 \\
& r_{3}=0.000448
\end{aligned}
$$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
$r_{4}=2.087505$
Back substitution

$$
\begin{aligned}
& x_{4}=1.036222 \\
& x_{3}=0.01096 \\
& x_{2}=0.021586 \\
& x_{1}=2.072441
\end{aligned}
$$

11.4 We can use MATLAB to verify the results of Example 11.2,

```
>> L=[l2.4495 0 0;6.1237 4.1833 0;22.454 20.916 6.1106]
L =
    2.4495 0 0
    6.1237 4.1833 0
    22.4540 20.9160 6.1106
>> L*L'
ans =
    6.0001 15.0000 55.0011
    15.0000 54.9997 224.9995
    55.0011 224.9995 979.0006
```


11.5

$l_{11}=\sqrt{8}=2.828427$
$l_{21}=\frac{20}{2.828427}=7.071068$
$l_{22}=\sqrt{80-7.071068^{2}}=5.477226$
$l_{31}=\frac{15}{2.828427}=5.303301$
$l_{32}=\frac{50-7.0710685 .303301)}{5.477226}=2.282177$
$l_{33}=\sqrt{60-5.30330 \mathrm{r}^{2}-2.282177^{2}}=5.163978$
Thus, the Cholesky decomposition is

$$
[L]=\left[\begin{array}{lll}
2.828427 & & \\
7.071068 & 5.477226 & \\
5.303301 & 2.282177 & 5.163978
\end{array}\right]
$$

11.6

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$$
\begin{aligned}
& l_{11}=\sqrt{6}=2.44949 \\
& l_{21}=\frac{15}{2.44949}=6.123724 \\
& l_{22}=\sqrt{55-6.123724^{2}}=4.1833 \\
& l_{31}=\frac{55}{2.44949}=22.45366 \\
& l_{32}=\frac{225-6.12372422 .45366}{4.1833}=20.9165 \\
& l_{33}=\sqrt{979-22.45366^{2}-20.9165^{2}}=6.110101
\end{aligned}
$$

Thus, the Cholesky decomposition is

$$
[L]=\left[\begin{array}{ccc}
2.44949 & & \\
6.123724 & 4.1833 & \\
22.45366 & 20.9165 & 6.110101
\end{array}\right]
$$

The solution can then be generated by first using forward substitution to modify the right-hand-side vector,

$$
[L]\{D\}=\{B\}
$$

which can be solved for

$$
\{D\}=\left\{\begin{array}{l}
62.29869 \\
48.78923 \\
11.36915
\end{array}\right\}
$$

Then, we can use back substitution to determine the final solution,
$[L]^{T}\{X\}=\{D\}$
which can be solved for
$\{D\}=\left\{\begin{array}{l}2.478571 \\ 2.359286 \\ 1.860714\end{array}\right\}$
11.7 (a) The first iteration can be implemented as

$$
\begin{aligned}
& x_{1}=\frac{41+0.4 x_{2}}{0.8}=\frac{41+0.4(0)}{0.8}=51.25 \\
& x_{2}=\frac{25+0.4 x_{1}+0.4 x_{3}}{0.8}=\frac{25+0.4(51.25)+0.4(0)}{0.8}=56.875 \\
& x_{3}=\frac{105+0.4 x_{2}}{0.8}=\frac{105+0.4(56.875)}{0.8}=159.6875
\end{aligned}
$$

Second iteration:

$$
\begin{aligned}
& x_{1}=\frac{41+0.4(56.875)}{0.8}=79.6875 \\
& x_{2}=\frac{25+0.4(79.6875)+0.4(159.6875)}{0.8}=150.9375 \\
& x_{3}=\frac{105+0.4(150.9375)}{0.8}=206.7188
\end{aligned}
$$

The error estimates can be computed as

$$
\begin{aligned}
& \varepsilon_{a, 1}=\left|\frac{79.6875-51.25}{79.6875}\right| \times 100 \%=35.69 \% \\
& \varepsilon_{a, 2}=\left|\frac{150.9375-56.875}{150.9375}\right| \times 100 \%=62.32 \% \\
& \varepsilon_{a, 3}=\left|\frac{206.7188-159.6875}{206.7188}\right| \times 100 \%=22.75 \%
\end{aligned}
$$

The remainder of the calculation proceeds until all the errors fall below the stopping criterion of 5%. The entire computation can be summarized as

iteration	unknown	value	ε_{a}	maximum ε_{a}
1	x_{1}	51.25	100.00%	
	x_{2}	56.875	100.00%	
	x_{3}	159.6875	100.00%	100.00%
2	x_{1}	79.6875	35.69%	
	x_{2}	150.9375	62.32%	
	x_{3}	206.7188	22.75%	62.32%
3	x_{1}	126.7188	37.11%	
	x_{2}	197.9688	23.76%	
	x_{3}	230.2344	10.21%	37.11%
4	x_{1}	150.2344	15.65%	
	x_{2}	221.4844	10.62%	

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

	x_{3}	241.9922	4.86%	15.65%
5	x_{1}	161.9922	7.26%	
	x_{2}	233.2422	5.04%	
	x_{3}	247.8711	2.37%	7.26%
6	x_{1}	167.8711	3.50%	
	x_{2}	239.1211	2.46%	
	x_{3}	250.8105	1.17%	3.50%

Thus, after 6 iterations, the maximum error is 3.5% and we arrive at the result: $x_{1}=167.8711$, $x_{2}=239.1211$ and $x_{3}=250.8105$.
(b) The same computation can be developed with relaxation where $\lambda=1.2$.

First iteration:

$$
x_{1}=\frac{41+0.4 x_{2}}{0.8}=\frac{41+0.4(0)}{0.8}=51.25
$$

Relaxation yields: $x_{1}=1.2(51.25)-0.2(0)=61.5$

$$
x_{2}=\frac{25+0.4 x_{1}+0.4 x_{3}}{0.8}=\frac{25+0.4(61.5)+0.4(0)}{0.8}=62
$$

Relaxation yields: $x_{2}=1.2(62)-0.2(0)=74.4$
$x_{3}=\frac{105+0.4 x_{2}}{0.8}=\frac{105+0.4(74.4)}{0.8}=168.45$
Relaxation yields: $x_{3}=1.2(168.45)-0.2(0)=202.14$

Second iteration:

$$
x_{1}=\frac{41+0.4(74.4)}{0.8}=88.45
$$

Relaxation yields: $x_{1}=1.2(88.45)-0.2(61.5)=93.84$

$$
x_{2}=\frac{25+0.4(93.84)+0.4(202.14)}{0.8}=179.24
$$

Relaxation yields: $x_{2}=1.2(179.24)-0.2(74.4)=200.208$
$x_{3}=\frac{105+0.4(200.208)}{0.8}=231.354$

Relaxation yields: $x_{3}=1.2(231.354)-0.2(202.14)=237.1968$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

The error estimates can be computed as

$$
\begin{aligned}
& \varepsilon_{a, 1}=\left|\frac{93.84-61.5}{93.84}\right| \times 100 \%=34.46 \% \\
& \varepsilon_{a, 2}=\left|\frac{200.208-74.4}{200.208}\right| \times 100 \%=62.84 \% \\
& \varepsilon_{a, 3}=\left|\frac{237.1968-202.14}{237.1968}\right| \times 100 \%=14.78 \%
\end{aligned}
$$

The remainder of the calculation proceeds until all the errors fall below the stopping criterion of 5%. The entire computation can be summarized as

iteration	unknown	value	relaxation	ε_{a}	maximum ε_{a}
1	x_{1}	51.25	61.5	100.00%	
	x_{2}	62	74.4	100.00%	
	x_{3}	168.45	202.14	100.00%	100.000%
2	x_{1}	88.45	93.84	34.46%	
	x_{2}	179.24	200.208	62.84%	
	x_{3}	231.354	237.1968	14.78%	62.839%
3	x_{1}	151.354	162.8568	42.38%	
	x_{2}	231.2768	237.49056	15.70%	
	x_{3}	249.99528	252.55498	6.08%	42.379%
4	x_{1}	169.99528	171.42298	5.00%	
	x_{2}	243.23898	244.38866	2.82%	
	x_{3}	253.44433	253.6222	0.42%	4.997%

Thus, relaxation speeds up convergence. After 6 iterations, the maximum error is 4.997% and we arrive at the result: $x_{1}=171.423, x_{2}=244.389$ and $x_{3}=253.622$.
11.8 The first iteration can be implemented as

$$
\begin{aligned}
& c_{1}=\frac{3800+3 c_{2}+c_{3}}{15}=\frac{3800+3(0)+0}{15}=253.3333 \\
& c_{2}=\frac{1200+3 c_{1}+6 c_{3}}{18}=\frac{1200+3(253.3333)+6(0)}{18}=108.8889 \\
& c_{3}=\frac{2350+4 c_{1}+c_{2}}{12}=\frac{2350+4(253.3333)+108.8889}{12}=289.3519
\end{aligned}
$$

Second iteration:

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$$
\begin{aligned}
& c_{1}=\frac{3800+3 c_{2}+c_{3}}{15}=\frac{3800+3(108.8889)+289.3519}{15}=294.4012 \\
& c_{2}=\frac{1200+3 c_{1}+6 c_{3}}{18}=\frac{1200+3(294.4012)+6(289.3519)}{18}=212.1842 \\
& c_{3}=\frac{2350+4 c_{1}+c_{2}}{12}=\frac{2350+4(294.4012)+212.1842}{12}=311.6491
\end{aligned}
$$

The error estimates can be computed as

$$
\begin{aligned}
& \varepsilon_{a, 1}=\left|\frac{294.4012-253.3333}{294.4012}\right| \times 100 \%=13.95 \% \\
& \varepsilon_{a, 2}=\left|\frac{212.1842-108.8889}{212.1842}\right| \times 100 \%=48.68 \% \\
& \varepsilon_{a, 3}=\left|\frac{311.6491-289.3519}{311.6491}\right| \times 100 \%=7.15 \%
\end{aligned}
$$

The remainder of the calculation proceeds until all the errors fall below the stopping criterion of 5%. The entire computation can be summarized as

iteration	unknown	value	ε_{a}	maximum ε_{a}
1	c_{1}	253.3333	100.00%	
	c_{2}	108.8889	100.00%	
	c_{3}	289.3519	100.00%	100.00%
2	c_{1}	294.4012	13.95%	
	c_{2}	212.1842	48.68%	
	c_{3}	311.6491	7.15%	48.68%
3	c_{1}	316.5468	7.00%	
	c_{2}	223.3075	4.98%	
	c_{3}	319.9579	2.60%	7.00%
4	c_{1}	319.3254	0.87%	
	c_{2}	226.5402	1.43%	
	c_{3}	321.1535	0.37%	1.43%

Thus, after 4 iterations, the maximum error is 1.43% and we arrive at the result: $c_{1}=$ $319.3254, c_{2}=226.5402$ and $c_{3}=321.1535$.
11.9 The first iteration can be implemented as

$$
c_{1}=\frac{3800+3 c_{2}+c_{3}}{15}=\frac{3800+3(0)+0}{15}=253.3333
$$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$$
\begin{aligned}
& c_{2}=\frac{1200+3 c_{1}+6 c_{3}}{18}=\frac{1200+3(0)+6(0)}{18}=66.6667 \\
& c_{3}=\frac{2350+4 c_{1}+c_{2}}{12}=\frac{2350+4(0)+0}{12}=195.8333
\end{aligned}
$$

Second iteration:
$c_{1}=\frac{3800+3 c_{2}+c_{3}}{15}=\frac{3800+3(66.6667)+195.8333}{15}=279.7222$
$c_{2}=\frac{1200+3 c_{1}+6 c_{3}}{18}=\frac{1200+3(253.3333)+6(195.8333)}{18}=174.1667$
$c_{3}=\frac{2350+4 c_{1}+c_{2}}{12}=\frac{2350+4(253.3333)+66.6667}{12}=285.8333$
The error estimates can be computed as

$$
\begin{aligned}
& \varepsilon_{a, 1}=\left|\frac{279.7222-253.3333}{279.7222}\right| \times 100 \%=9.43 \% \\
& \varepsilon_{a, 2}=\left|\frac{174.1667-66.6667}{174.1667}\right| \times 100 \%=61.72 \% \\
& \varepsilon_{a, 3}=\left|\frac{285.8333-195.8333}{285.8333}\right| \times 100 \%=31.49 \%
\end{aligned}
$$

The remainder of the calculation proceeds until all the errors fall below the stopping criterion of 5%. The entire computation can be summarized as

iteration	unknown	value	ε_{a}	maximum ε_{a}
1	c_{1}	253.3333	100.00%	
	c_{2}	66.66667	100.00%	
	c_{3}	195.8333	100.00%	100.00%
2	c_{1}	279.7222	9.43%	
	c_{2}	174.1667	61.72%	
	c_{3}	285.8333	31.49%	61.72%
3	c_{1}	307.2222	8.95%	
	c_{2}	208.5648	16.49%	
	c_{3}	303.588	5.85%	16.49%
4	c_{1}	315.2855	2.56%	
	c_{2}	219.0664	4.79%	
	c_{3}	315.6211	3.81%	4.79%

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Thus, after 4 iterations, the maximum error is 4.79% and we arrive at the result: $c_{1}=$ $315.5402, c_{2}=219.0664$ and $c_{3}=315.6211$.
11.10 The first iteration can be implemented as
$x_{1}=\frac{27-2 x_{2}+x_{3}}{10}=\frac{27-2(0)+0}{10}=2.7$
$x_{2}=\frac{-61.5+3 x_{1}-2 x_{3}}{-6}=\frac{-61.5+3(2.7)-2(0)}{-6}=8.9$
$x_{3}=\frac{-21.5-x_{1}-x_{2}}{5}=\frac{-21.5-(2.7)-8.9}{5}=-6.62$

Second iteration:
$x_{1}=\frac{27-2(8.9)-6.62}{10}=0.258$
$x_{2}=\frac{-61.5+3(0.258)-2(-6.62)}{-6}=7.914333$
$x_{3}=\frac{-21.5-(0.258)-7.914333}{5}=-5.934467$

The error estimates can be computed as
$\varepsilon_{a, 1}=\left|\frac{0.258-2.7}{0.258}\right| \times 100 \%=947 \%$
$\varepsilon_{a, 2}=\left|\frac{7.914333-8.9}{7.914333}\right| \times 100 \%=12.45 \%$
$\varepsilon_{a, 3}=\left|\frac{-5.934467-(-6.62)}{-5.934467}\right| \times 100 \%=11.55 \%$

The remainder of the calculation proceeds until all the errors fall below the stopping criterion of 5%. The entire computation can be summarized as

iteration	unknown	value	ε_{a}	maximum ε_{a}
1	x_{1}	2.7	100.00%	
	x_{2}	8.9	100.00%	
	x_{3}	-6.62	100.00%	100%
2	x_{1}	0.258	946.51%	
	x_{2}	7.914333	12.45%	
	x_{3}	-5.93447	11.55%	946%

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

3	x_{1}	0.523687	50.73%	
	x_{2}	8.010001	1.19%	
	x_{3}	-6.00674	1.20%	50.73%
4	x_{1}	0.497326	5.30%	
	x_{2}	7.999091	0.14%	
	x_{3}	-5.99928	0.12%	5.30%
5	x_{1}	0.500253	0.59%	
	x_{2}	8.000112	0.01%	
	x_{3}	-6.00007	0.01%	0.59%

Thus, after 5 iterations, the maximum error is 0.59% and we arrive at the result: $x_{1}=$ $0.500253, x_{2}=8.000112$ and $x_{3}=-6.00007$.
11.11 The equations should first be rearranged so that they are diagonally dominant,
$6 x_{1}-x_{2}-x_{3}=3$
$6 x_{1}+9 x_{2}+x_{3}=40$
$-3 x_{1}+x_{2}+12 x_{3}=50$

Each can be solved for the unknown on the diagonal as
$x_{1}=\frac{3+x_{2}+x_{3}}{6}$
$x_{2}=\frac{40-6 x_{1}-x_{3}}{9}$
$x_{3}=\frac{50+3 x_{1}-x_{2}}{12}$
(a) The first iteration can be implemented as
$x_{1}=\frac{3+0+0}{6}=0.5$
$x_{2}=\frac{40-6(0.5)-0}{9}=4.11111$
$x_{3}=\frac{50+3(0.5)-4.11111}{12}=3.949074$

Second iteration:

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$$
\begin{aligned}
& x_{1}=\frac{3+4.11111+3.949074}{6}=1.843364 \\
& x_{2}=\frac{40-6(1.843364)-3.949074}{9}=2.776749 \\
& x_{3}=\frac{50+3(1.843364)-2.776749}{12}=4.396112
\end{aligned}
$$

The error estimates can be computed as

$$
\begin{aligned}
& \varepsilon_{a, 1}=\left|\frac{1.843364-0.5}{1.843364}\right| \times 100 \%=72.88 \% \\
& \varepsilon_{a, 2}=\left|\frac{2.776749-4.11111}{2.776749}\right| \times 100 \%=48.05 \% \\
& \varepsilon_{a, 3}=\left|\frac{4.396112-3.949074}{4.396112}\right| \times 100 \%=10.17 \%
\end{aligned}
$$

The remainder of the calculation proceeds until all the errors fall below the stopping criterion of 5%. The entire computation can be summarized as

iteration	unknown	value	ε_{a}	maximum ε_{a}
1	x_{1}	0.5	100.00%	
	x_{2}	4.111111	100.00%	
	x_{3}	3.949074	100.00%	100.00%
2	x_{1}	1.843364	72.88%	
	x_{2}	2.776749	48.05%	
	x_{3}	4.396112	10.17%	72.88%
3	x_{1}	1.695477	8.72%	
	x_{2}	2.82567	1.73%	
	x_{3}	4.355063	0.94%	8.72%
4	x_{1}	1.696789	0.08%	
	x_{2}	2.829356	0.13%	
	x_{3}	4.355084	0.00%	0.13%

Thus, after 4 iterations, the maximum error is 0.13% and we arrive at the result: $x_{1}=$ $1.696789, x_{2}=2.829356$ and $x_{3}=4.355084$.
(b) First iteration: To start, assume $x_{1}=x_{2}=x_{3}=0$
$x_{1}^{\text {new }}=\frac{3+0+0}{6}=0.5$
Apply relaxation

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
$x_{1}=0.95(0.5)+(1-0.95) 0=0.475$
$x_{2}^{\text {new }}=\frac{40-6(0.475)-0}{9}=4.12778$
$x_{2}=0.95(4.12778)+(1-0.95) 0=3.92139$
$x_{3}^{\text {new }}=\frac{50+3(0.475)-3.92139}{12}=3.95863$
$x_{3}=0.95(3.95863)+(1-0.95) 0=3.76070$

Note that error estimates are not made on the first iteration, because all errors will be 100%.

Second iteration:
$x_{1}^{n e w}=\frac{3+3.92139+3.76070}{6}=1.78035$
$x_{1}=0.95(1.78035)+(1-0.95)(0.475)=1.71508$

At this point, an error estimate can be made
$\varepsilon_{a, 1}=\left|\frac{1.71508-0.475}{1.71508}\right| 100 \%=72.3 \%$

Because this error exceeds the stopping criterion, it will not be necessary to compute error estimates for the remainder of this iteration.
$x_{2}^{\text {new }}=\frac{40-6(1.71508)-3.76070}{9}=2.88320$
$x_{2}=0.95(2.88320)+(1-0.95) 3.92139=2.93511$
$x_{3}^{\text {new }}=\frac{50+3(1.71508)-2.93511}{12}=4.35084$
$x_{3}=0.95(4.35084)+(1-0.95) 3.76070=4.32134$

The computations can be continued for one more iteration. The entire calculation is summarized in the following table.

iteration	x_{1}	$x_{1 r}$	$\varepsilon_{a 1}$	x_{2}	$x_{2 r}$	$\varepsilon_{a 2}$	x_{3}	$x_{3 r}$	$\varepsilon_{a 3}$
1	0.50000	0.47500	100.0%	4.12778	3.92139	100.0%	3.95863	3.76070	100.0%
2	1.78035	1.71508	72.3%	2.88320	2.93511	33.6%	4.35084	4.32134	13.0%
3	1.70941	1.70969	0.3%	2.82450	2.83003	3.7%	4.35825	4.35641	0.8%

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

After 3 iterations, the approximate errors fall below the stopping criterion with the final result: $x_{1}=1.70969, x_{2}=2.82450$ and $x_{3}=4.35641$. Note that the exact solution is $x_{1}=$ $1.69737, x_{2}=2.82895$ and $x_{3}=4.35526$
11.12 The equations must first be rearranged so that they are diagonally dominant

$$
\begin{aligned}
& -8 x_{1}+x_{2}-2 x_{3}=-20 \\
& 2 x_{1}-6 x_{2}-x_{3}=-38 \\
& -3 x_{1}-x_{2}+7 x_{3}=-34
\end{aligned}
$$

(a) The first iteration can be implemented as
$x_{1}=\frac{-20-x_{2}+2 x_{3}}{-8}=\frac{-20-0+2(0)}{-8}=2.5$
$x_{2}=\frac{-38-2 x_{1}+x_{3}}{-6}=\frac{-38-2(2.5)+0}{-6}=7.166667$
$x_{3}=\frac{-34+3 x_{1}+x_{2}}{7}=\frac{-34+3(2.5)+7.166667}{7}=-2.761905$

Second iteration:
$x_{1}=\frac{-20-7.166667+2(-2.761905)}{-8}=4.08631$
$x_{2}=\frac{-38-2 x_{1}+x_{3}}{-6}=\frac{-38-2(4.08631)+(-2.761905)}{-6}=8.155754$
$x_{3}=\frac{-34+3 x_{1}+x_{2}}{7}=\frac{-34+3(4.08631)+8.155754}{7}=-1.94076$

The error estimates can be computed as
$\varepsilon_{a, 1}=\left|\frac{4.08631-2.5}{4.08631}\right| \times 100 \%=38.82 \%$
$\varepsilon_{a, 2}=\left|\frac{8.155754-7.166667}{8.155754}\right| \times 100 \%=12.13 \%$
$\varepsilon_{a, 3}=\left|\frac{-1.94076-(-2.761905)}{-1.94076}\right| \times 100 \%=42.31 \%$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

The remainder of the calculation proceeds until all the errors fall below the stopping criterion of 5%. The entire computation can be summarized as

iteration	unknown	value	ε_{a}	maximum ε_{a}
0	x_{1}	0		
	x_{2}	0		
	x_{3}	0		
1	x_{1}	2.5	100.00%	
	x_{2}	7.166667	100.00%	
	x_{3}	-2.7619	100.00%	100.00%
2	x_{1}	4.08631	38.82%	
	x_{2}	8.155754	12.13%	
	x_{3}	-1.94076	42.31%	42.31%
3	x_{1}	4.004659	2.04%	
	x_{2}	7.99168	2.05%	
	x_{3}	-1.99919	2.92%	2.92%

Thus, after 3 iterations, the maximum error is 2.92% and we arrive at the result: $x_{1}=$ $4.004659, x_{2}=7.99168$ and $x_{3}=-1.99919$.
(b) The same computation can be developed with relaxation where $\lambda=1.2$.

First iteration:

$$
x_{1}=\frac{-20-x_{2}+2 x_{3}}{-8}=\frac{-20-0+2(0)}{-8}=2.5
$$

Relaxation yields: $x_{1}=1.2(2.5)-0.2(0)=3$

$$
x_{2}=\frac{-38-2 x_{1}+x_{3}}{-6}=\frac{-38-2(3)+0}{-6}=7.333333
$$

Relaxation yields: $x_{2}=1.2(7.333333)-0.2(0)=8.8$

$$
x_{3}=\frac{-34+3 x_{1}+x_{2}}{7}=\frac{-34+3(3)+8.8}{7}=-2.3142857
$$

Relaxation yields: $x_{3}=1.2(-2.3142857)-0.2(0)=-2.777142$,
Second iteration:

$$
x_{1}=\frac{-20-x_{2}+2 x_{3}}{-8}=\frac{-20-8.8+2(-2.7771429)}{-8}=4.2942857
$$

Relaxation yields: $x_{1}=1.2(4.2942857)-0.2(3)=4.5531429$

$$
x_{2}=\frac{-38-2 x_{1}+x_{3}}{-6}=\frac{-38-2(4.5531429-2.7771429}{-6}=8.3139048
$$

Relaxation yields: $x_{2}=1.2(8.3139048-0.2(8.8)=8.2166857$

$$
x_{3}=\frac{-34+3 x_{1}+x_{2}}{7}=\frac{-34+3(4.5531429+8.2166857}{7}=-1.7319837
$$

Relaxation yields: $x_{3}=1.2(-1.7319837)-0.2(-2.7771429=-1.5229518$
The error estimates can be computed as

$$
\begin{aligned}
& \varepsilon_{a, 1}=\left|\frac{4.5531429-3}{4.5531429}\right| \times 100 \%=34.11 \% \\
& \varepsilon_{a, 2}=\left|\frac{8.2166857-8.8}{8.2166857}\right| \times 100 \%=7.1 \% \\
& \varepsilon_{a, 3}=\left|\frac{-1.5229518-(-2.7771429}{-1.5229518}\right| \times 100 \%=82.35 \%
\end{aligned}
$$

The remainder of the calculation proceeds until all the errors fall below the stopping criterion of 5%. The entire computation can be summarized as

iteration	unknown	value	relaxation	ε_{a}	maximum ε_{a}
1	x_{1}	2.5	3	100.00%	
	x_{2}	7.3333333	8.8	100.00%	
	x_{3}	-2.314286	-2.777143	100.00%	100.000%
2	x_{1}	4.2942857	4.5531429	34.11%	
	x_{2}	8.3139048	8.2166857	7.10%	
	x_{3}	-1.731984	-1.522952	82.35%	82.353%
3	x_{1}	3.9078237	3.7787598	20.49%	
	x_{2}	7.8467453	7.7727572	5.71%	
	x_{3}	-2.12728	-2.248146	32.26%	32.257%
4	x_{1}	4.0336312	4.0846055	7.49%	
	x_{2}	8.0695595	8.12892	4.38%	
	x_{3}	-1.945323	-1.884759	19.28%	19.280%
5	x_{1}	3.9873047	3.9678445	2.94%	
	x_{2}	7.9700747	7.9383056	2.40%	
	x_{3}	-2.022594	-2.050162	8.07%	8.068%
6	x_{1}	4.0048286	4.0122254	1.11%	
	x_{2}	8.0124354	8.0272613	1.11%	
	x_{3}	-1.990866	-1.979007	3.60%	3.595%

Thus, relaxation actually seems to retard convergence. After 6 iterations, the maximum error is 3.595% and we arrive at the result: $x_{1}=4.0122254, x_{2}=8.0272613$ and $x_{3}=-1.979007$.

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
11.13 As shown below, for slopes of 1 and -1 the Gauss-Seidel technique will neither converge nor diverge but will oscillate interminably.

11.14 As ordered, none of the sets will converge. However, if Set 1 and 2 are reordered so that they are diagonally dominant, they will converge on the solution of $(1,1,1)$.

Set 1: $\quad 9 x+3 y+z=13$

$$
2 x+5 y-z=6
$$

$$
-6 x+8 z=2
$$

Set 2: $\quad 4 x+2 y-2 z=4$

$$
x+5 y-z=5
$$

$$
x+y+6 z=8
$$

At face value, because it is not strictly diagonally dominant, Set 2 would seem to be divergent. However, since it is very close to being diagonally dominant, a solution can be obtained.

The third set is not diagonally dominant and will diverge for most orderings. However, the following arrangement will converge albeit at a very slow rate:

Set 3: $\quad-3 x+4 y+5 z=6$
$2 y-z=1$

$$
-2 x+2 y-3 z=-3
$$

11.15 Using MATLAB:

(a) The results for the first system will come out as expected.

```
>> A=[1 4 9;4 9 16;9 16 25]
>> B=[14 29 50]'
>> x=A\B
x =
    1.0000
    1.0000
    1.0000
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

```
>> inv(A)
ans =
    3.8750 -5.5000 2.1250
    -5.5000 7.0000 -2.5000
        2.1250 -2.5000 0.8750
>> cond(A,inf)
ans =
    750.0000
```

(b) However, for the 4×4 system, the ill-conditioned nature of the matrix yields poor results:

```
>> A=[1 4 9 16;4 9 16 25;9 16 25 36;16 25 36 49];
>> B=[[30 54 86 126]';
>> x=A\B
Warning: Matrix is close to singular or badly scaled.
                    Results may be inaccurate. RCOND = 3.037487e-019.
x =
        0.5496
        2.3513
    -0.3513
        1.4504
>> cond(A,inf)
Warning: Matrix is close to singular or badly scaled.
    Results may be inaccurate. RCOND = 3.037487e-019.
> In cond at 48
ans =
    3.2922e+018
```

Note that using other software such as Excel yields similar results. For example, the condition number computed with Excel is 5×10^{17}.
11.16 (a) As shown, there are 4 roots, one in each quadrant.

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
(b) It might be expected that if an initial guess was within a quadrant, the result would be the root in the quadrant. However a sample of initial guesses spanning the range yield the following roots:

6	$(-2,-4)$	$(-0.618,3.236)$	$(-0.618,3.236)$	$(1,2)$	$(-0.618,3.236)$
3	$(-0.618,3.236)$	$(-0.618,3.236)$	$(-0.618,3.236)$	$(1,2)$	$(-0.618,3.236)$
0	$(1,2)$	$(1.618,-1.236)$	$(1.618,-1.236)$	$(1.618,-1.236)$	$(1.618,-1.236)$
-3	$(-2,-4)$	$(-2,-4)$	$(1.618,-1.236)$	$(1.618,-1.236)$	$(1.618,-1.236)$
-6	$(-2,-4)$	$(-2,-4)$	$(-2,-4)$	$(1.618,-1.236)$	$(-2,-4)$
	-6	-3	0	3	6

We have highlighted the guesses that converge to the roots in their quadrants. Although some follow the pattern, others jump to roots that are far away. For example, the guess of $(-6,0)$ jumps to the root in the first quadrant.

This underscores the notion that root location techniques are highly sensitive to initial guesses and that open methods like the Solver can locate roots that are not in the vicinity of the initial guesses.
11.17 Define the quantity of transistors, resistors, and computer chips as x_{1}, x_{2} and x_{3}. The system equations can then be defined as
$4 x_{1}+3 x_{2}+2 x_{3}=960$
$x_{1}+3 x_{2}+x_{3}=510$
$2 x_{1}+x_{2}+3 x_{3}=610$

The solution can be implemented in Excel as shown below:

	A	B	C	D
1	A:			B:
2	4	3	2	960
3	1	3	1	510
4	2	1	3	610
5				
6	Al:			X
7	0.421053	-0.36842	-0.15789	120
8	-0.05263	0.421053	-0.10526	100
9	-0.26316	0.105263	0.473684	90

The following view shows the formulas that are employed to determine the inverse in cells A7:C9 and the solution in cells D7:D9.

	A	B	C	D
1	$\mathrm{~A}:$	3	2	B
2	4	3	1	960
3	1	1	3	510
4	2			610
5				X
6	Al:			
7	$=$ MINVERSE(A2:C4)	$=$ MINVERSE(A2:C4)	$=$ MINVERSE(A2:C4)	$=$ MMULT(A7:C9,D2:D4)
8	$=$ MINVERSE(A2:C4)	$=$ MINVERSE(A2:C4)	$=$ MINVERSE(A2:C4)	$=$ MMULT(A7:C9,D2:D4)
9	$=M \mid N V E R S E(A 2: C 4)$	$=$ MINVERSE(A2:C4)	$=$ MINVERSE(A2:C4)	$=$ MMULT(A7:C9,D2:D4)

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Here is the same solution generated in MATLAB:

```
>> A=[[4 3 2;1 3 1;2 1 3];
>> B=[960 510 610]';
>> x=A\B
x =
    1 2 0
    100
        90
```

In both cases, the answer is $x_{1}=120, x_{2}=100$, and $x_{3}=90$
11.18 The spectral condition number can be evaluated as

```
>> A = hilb(10);
>> N = cond(A)
N =
    1.6025e+013
```

The digits of precision that could be lost due to ill-conditioning can be calculated as

```
>> c = log10(N)
C =
    13.2048
```

Thus, about 13 digits could be suspect. A right-hand side vector can be developed corresponding to a solution of ones:

```
>> b=[sum(A(1,:)); sum(A(2,:)); sum(A(3,:)); sum(A(4,:)); sum(A(5,:));
sum(A(6,:)); sum(A(7,:)); sum(A(8,:)); sum(A(9,:)); sum(A(10,:))]
b =
    2.9290
    2.0199
    1.6032
    1.3468
    1.1682
    1.0349
    0.9307
    0.8467
    0.7773
    0.7188
```

The solution can then be generated by left division

```
>> x = A\b
x =
    1.0000
    1.0000
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

```
1.0000
1.0000
0.9999
1.0003
0.9995
1.0005
0.9997
1.0001
```

The maximum and mean errors can be computed as

```
>> e=max(abs(x-1))
e =
    5.3822e-004
>> e=mean(abs (x-1))
e =
    1.8662e-004
```

Thus, some of the results are accurate to only about 3 to 4 significant digits. Because MATLAB represents numbers to 15 significant digits, this means that about 11 to 12 digits are suspect.
11.19 First, the Vandermonde matrix can be set up

```
>> x1 = 4;x2=2;x3=7;x4=10;x5=3;x6=5;
>> A = [x1^5 x1^4 x1^3 x1^2 x1 1;x2^5 x2^4 x2^3 x2^2 x2 1;x3^5 x3^4
x3^3 x3^2 x3 1;x4^5 x4^4 x4^3 x4^2 x4 1;x5^5 x5^4 x5^3 x5^2 x5 1; x6^5
x6^4 x6^3 x6^2 x6 1]
A =
\begin{tabular}{rrrrrr}
1024 & 256 & 64 & 16 & 4 & 1 \\
32 & 16 & 8 & 4 & 2 & 1 \\
16807 & 2401 & 343 & 49 & 7 & 1 \\
100000 & 10000 & 1000 & 100 & 10 & 1 \\
243 & 81 & 27 & 9 & 3 & 1 \\
3125 & 625 & 125 & 25 & 5 & 1
\end{tabular}
```

The spectral condition number can be evaluated as

```
>> N = cond(A)
N =
    1.4492e+007
```

The digits of precision that could be lost due to ill-conditioning can be calculated as

```
>> c = log10(N)
c =
    7.1611
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Thus, about 7 digits might be suspect. A right-hand side vector can be developed corresponding to a solution of ones:

```
>> b=[sum(A(1,:));\operatorname{sum}(A(2,:));\operatorname{sum}(A(3,:));\operatorname{sum}(A(4,:));\operatorname{sum}(A(5,:));
sum(A(6,:))]
b =
        1 3 6 5
            6 3
        19608
        1 1 1 1 1 1
            364
            3906
```

The solution can then be generated by left division

```
>> format long
>> x=A\b
x =
    1.00000000000000
    0.99999999999991
    1.00000000000075
    0.99999999999703
    1.00000000000542
    0.99999999999630
```

The maximum and mean errors can be computed as

```
>> e = max(abs(x-1))
e =
    5.420774940034789e-012
>> e = mean(abs(x-1))
e =
    2.154110223528960e-012
```

Some of the results are accurate to about 12 significant digits. Because MATLAB represents numbers to about 15 significant digits, this means that about 3 digits are suspect. Thus, for this case, the condition number tends to exaggerate the impact of ill-conditioning.
11.20 The flop counts for the tridiagonal algorithm in Fig. 11.2 can be determined as

```
Sub Decomp (e, f, g, n)
Dim k As Integer
For k = 2 To n
    e(k)=e(k) / f(k - 1) '(n - 1)
    f(k)=f(k)-e(k)*g(k - 1) '(n - 1) (n - 1)
Next k
End Sub
Sub Substitute(e, f, g, r, n, x)
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

```
Dim \(k\) As Integer
For \(k=2\) To \(n\)
    \(r(k)=r(k)-e(k) * r(k-1) \quad{ }^{\prime}(n-1) \quad(n-1)\)
Next k
\(x(n)=r(n) / f(n)\)
' 1
For \(k=n-1\) To 1 Step -1
    \(x(k)=(r(k)-g(k) \star x(k+1)) / f(k) \quad 12(n-1) \quad(n-1)\)
Next k
End Sub
Sum =
\(5(n-1)+1(3 n-3)\)
```

The multiply/divides and add/subtracts can be summed to yield $8 n-7$ as opposed to $n^{3} / 3$ for naive Gauss elimination. Therefore, a tridiagonal solver is well worth using.

11.21 Here is a VBA macro to obtain a solution for a tridiagonal system using the Thomas algorithm. It is set up to duplicate the results of Example 11.1.

```
Option Explicit
Sub TriDiag()
Dim i As Integer, n As Integer
Dim e(10) As Double, f(10) As Double, g(10) As Double
Dim r(10) As Double, x(10) As Double
n = 4
e(2)=-1: e(3) = -1: e(4) = -1
f(1) = 2.04: f(2)=2.04:f(3)=2.04:f(4)=2.04
g(1) = -1: g(2) = -1: g(3) = -1
r(1) = 40.8:r(2) = 0.8:r(3) = 0.8:r(4) = 200.8
Call Thomas(e, f, g, r, n, x)
For i = 1 To n
    MsgBox x(i)
Next i
End Sub
Sub Thomas(e, f, g, r, n, x)
Call Decomp(e, f, g, n)
Call Substitute(e, f, g, r, n, x)
End Sub
Sub Decomp (e, f, g, n)
Dim k As Integer
For k = 2 To n
    e(k) = e(k) / f(k - 1)
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

```
    f(k) = f(k) - e(k) * g(k - 1)
Next k
End Sub
Sub Substitute(e, f, g, r, n, x)
Dim k As Integer
For k = 2 To n
    r(k) =r(k) - e(k) * r(k - 1)
Next k
x(n) = r(n) / f(n)
For k = n - 1 To 1 Step -1
    x(k) = (r (k) -g(k) * x (k + 1)) / f(k)
Next k
End Sub
```

11.22 Here is a VBA macro to obtain a solution of a symmetric system with Cholesky decomposition. It is set up to duplicate the results of Example 11.2.

```
Option Explicit
Sub TestChol()
Dim i As Integer, j As Integer
Dim n As Integer
Dim a(10, 10) As Double
n}=
a(1, 1) = 6: a (1, 2) = 15: a (1, 3) = 55
a(2, 1) = 15: a(2, 2) = 55: a(2, 3) = 225
a(3, 1) = 55: a(3, 2) = 225: a(3, 3) = 979
Call Cholesky(a, n)
'output results to worksheet
Sheets("Sheet1").Select
Range("a3").Select
For i = 1 To n
    For j = 1 To n
        ActiveCell.Value = a(i, j)
        ActiveCell.Offset(0, 1).Select
    Next j
    ActiveCell.Offset(1, -n).Select
Next i
Range("a3").Select
End Sub
Sub Cholesky(a, n)
Dim i As Integer, j As Integer, k As Integer
Dim sum As Double
For k = 1 To n
    For i = 1 To k - 1
            sum = 0
            For j = 1 To i - 1
                sum = sum + a(i, j) * a(k, j)
            Next j
            a(k, i) = (a(k, i) - sum) / a(i, i)
    Next i
    sum = 0
    For j = 1 To k - 1
            sum = sum + a(k, j) ^ 2
    Next j
    a(k, k) = Sqr(a(k, k) - sum)
Next k
End Sub
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
11.23 Here is a VBA macro to obtain a solution of a linear diagonally-dominant system with the Gauss-Seidel method. It is set up to duplicate the results of Example 11.3.

```
Option Explicit
Sub Gausseid()
Dim n As Integer, imax As Integer, i As Integer
Dim a(3, 3) As Double, b(3) As Double, x(3) As Double
Dim es As Double, lambda As Double
n = 3
a(1, 1) = 3: a(1, 2) = -0.1: a(1, 3) = -0.2
a(2, 1) = 0.1: a(2, 2) = 7: a(2, 3) = -0.3
a(3, 1) = 0.3: a(3, 2) = -0.2: a(3, 3) = 10
b(1) = 7.85: b(2) = -19.3: b(3) = 71.4
es = 0.1
imax = 20
lambda = 1#
Call Gseid(a, b, n, x, imax, es, lambda)
For i = 1 To n
    MsgBox x(i)
Next i
End Sub
Sub Gseid(a, b, n, x, imax, es, lambda)
Dim i As Integer, j As Integer, iter As Integer, sentinel As Integer
Dim dummy As Double, sum As Double, ea As Double, old As Double
For i = 1 To n
    dummy = a(i, i)
    For j = 1 To n
                a(i, j) = a(i, j) / dummy
    Next j
    b(i) = b(i) / dummy
Next i
For i = 1 To n
    sum = b(i)
    For j = 1 Ton
            If i <> j Then sum = sum - a(i, j) * x(j)
    Next j
    x(i) = sum
Next i
iter = 1
Do
    sentinel = 1
    For i = 1 To n
            old = x(i)
            sum = b(i)
            For j = 1 To n
                If i <> j Then sum = sum - a(i, j) * x(j)
            Next j
            x(i) = lambda * sum + (1# - lambda) * old
            If sentinel = 1 And x(i) <> 0 Then
                ea = Abs((x(i) - old) / x(i)) * 100
                If ea > es Then sentinel = 0
            End If
    Next i
    iter = iter + 1
    If sentinel = 1 Or iter >= imax Then Exit Do
Loop
End Sub
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

