CHAPTER 12

12.1 Flow balances can be used to determine
$Q_{01}=6$
$Q_{15}=3$
$Q_{12}=4$
$Q_{31}=1$
$Q_{03}=8$
$Q_{25}=1$
$Q_{23}=1$
$Q_{54}=2$
$Q_{55}=2$
$Q_{24}=2$
$Q_{34}=8$
$Q_{44}=12$

Mass balances can be used to determine the following simultaneous equations,

$$
\left[\begin{array}{ccccc}
7 & 0 & -1 & 0 & 0 \\
-4 & 4 & 0 & 0 & 0 \\
0 & -1 & 9 & 0 & 0 \\
0 & -2 & -8 & 12 & -2 \\
-3 & -1 & 0 & 0 & 4
\end{array}\right]\left\{\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4} \\
c_{5}
\end{array}\right\}=\left\{\begin{array}{c}
240 \\
0 \\
80 \\
0 \\
0
\end{array}\right\}
$$

The solution and the matrix inverse can then be developed. For example, using MATLAB,

```
>> A=[llllll
-4 4 0 0 0;
0-1 9 0 0;
0 -2 -8 12 -2;
-3 -1 0 0 4];
>> B=[240;0;80;0;0];
>> C=A\B
C =
    36.1290
    36.1290
    12.9032
    20.6452
    36.1290
>> inv(A)
ans =
\begin{tabular}{rrrrr}
0.1452 & 0.0040 & 0.0161 & 0 & 0 \\
0.1452 & 0.2540 & 0.0161 & 0 & 0 \\
0.0161 & 0.0282 & 0.1129 & 0 & 0 \\
0.0591 & 0.0722 & 0.0806 & 0.0833 & 0.0417 \\
0.1452 & 0.0665 & 0.0161 & 0 & 0.2500
\end{tabular}
```

12.2 The relevant coefficients of the matrix inverse are $a_{13}^{-1}=0.018868$ and $a_{43}^{-1}=0.087479$. Therefore a 25% change in the input to reactor 3 will lead to the following concentration changes to reactors 1 and 4 :

$$
\begin{aligned}
& \left.\Delta c_{1}=0.0188680 .25 \times 160\right)=0.754717 \\
& \Delta c_{4}=0.087479(0.25 \times 160)=3.499142
\end{aligned}
$$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

These can be expressed as percent changes,

$$
\begin{aligned}
& \frac{\Delta c_{1}}{c_{1}} \times 100 \%=\frac{0.754717}{11.50943} \times 100 \%=6.56 \% \\
& \frac{\Delta c_{4}}{c_{4}} \times 100 \%=\frac{3.499142}{16.99828} \times 100 \%=20.59 \%
\end{aligned}
$$

12.3 Because of conservation of flow:
$Q_{01}+Q_{03}=Q_{44}+Q_{55}$
12.4 Mass balances can be used to determine the following simultaneous equations,

$$
\left[\begin{array}{ccccc}
8 & 0 & -3 & 0 & 0 \\
-4 & 4 & 0 & 0 & 0 \\
0 & -2 & 10 & 0 & 0 \\
0 & 0 & -7 & 10 & -3 \\
-4 & -2 & 0 & 0 & 6
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4} \\
c_{5}
\end{array}\right\}=\left\{\begin{array}{c}
50 \\
0 \\
160 \\
0 \\
0
\end{array}\right\}
$$

The solution can then be developed. For example, using MATLAB,

```
>> A=[[8 0 -3 0 0;
-4 4 0 0 0;
0 -2 10 0 0;
0 0 -7 10 -3;
-4 -2 0 0 6];
>> B=[50;0;160;0;0];
>> C=A\B
C =
    13.2432
    13.2432
    18.6486
    17.0270
    13.2432
```

12.5 Flow balances can be used to determine
$Q_{01}=5$
$Q_{15}=3$
$Q_{12}=0$
$Q_{31}=-2$
$Q_{03}=8$
$Q_{25}=0$
$Q_{23}=-7$
$Q_{54}=0$
$Q_{55}=3$
$Q_{24}=7$
$Q_{34}=3$
$Q_{44}=10$

Mass balances can be used to determine the following simultaneous equations,

$$
\left[\begin{array}{ccccc}
5 & 0 & 0 & 0 & 0 \\
0 & 7 & -7 & 0 & 0 \\
-2 & 0 & 10 & 0 & 0 \\
0 & -7 & -3 & 10 & 0 \\
-3 & 0 & 0 & 0 & 3
\end{array}\right]\left\{\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4} \\
c_{5}
\end{array}\right\}=\left\{\begin{array}{c}
50 \\
0 \\
160 \\
0 \\
0
\end{array}\right\}
$$

The solution can then be developed. For example, using MATLAB,

```
>> A=[[5 0 0 0 0;
0 7 -7 0 -1;
-2 0 10 0 0;
0 -7 -3 10 0;
-3 0 0 0 3];
>> B=[50;0;160;0;0];
>> C=A\B
C =
    10.0000
    18.0000
    18.0000
    18.0000
    10.0000
```

12.6 Mass balances can be written for each of the reactors as

$$
\begin{aligned}
& 500-Q_{13} c_{1}-Q_{12} c_{1}+Q_{21} c_{2}=0 \\
& Q_{12} c_{1}-Q_{21} c_{2}-Q_{23} c_{2}=0 \\
& 200+Q_{13} c_{1}+Q_{23} c_{2}-Q_{33} c_{3}=0
\end{aligned}
$$

Values for the flows can be substituted and the system of equations can be written in matrix form as

$$
\left[\begin{array}{ccc}
130 & -30 & 0 \\
-90 & 90 & 0 \\
-40 & -60 & 120
\end{array}\right]\left\{\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right\}=\left\{\begin{array}{c}
500 \\
0 \\
200
\end{array}\right\}
$$

The solution can then be developed. For example, using MATLAB,

```
>> A=[130 -30 0;-90 90 0;-40 -60 120];
>> B=[500;0;200];
>> C=A\B
C =
    5.0000
    5 . 0 0 0 0
    5.8333
```

12.7 Mass balances can be written for each of the lakes as

Superior, c_{1} :

$$
180=67 c_{1}
$$

Michigan, c_{2} :

$$
710=36 c_{2}
$$

Huron, c_{3} :

$$
740+67 c_{1}+36 c_{2}=161 c_{3}
$$

Erie, c_{4} :

$$
3850+161 c_{3}=182 c_{4}
$$

Ontario, c_{5} :

$$
4720+182 c_{4}=212 c_{5}
$$

The system of equations can be written in matrix form as
$\left[\begin{array}{ccccc}67 & 0 & 0 & 0 & 0 \\ 0 & 36 & 0 & 0 & 0 \\ -67 & -36 & 161 & 0 & 0 \\ 0 & 0 & -161 & 182 & 0 \\ 0 & 0 & 0 & -182 & 212\end{array}\right]\left\{\begin{array}{l}c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{5}\end{array}\right\}=\left\{\begin{array}{c}180 \\ 710 \\ 740 \\ 3850 \\ 4720\end{array}\right\}$

The solution can then be developed. For example, using MATLAB,

```
>> A=[lllll
0 36 0 0 0;
-67 -36 161 0 0;
0 0 -161 182 0;
0 0 0 -182 212];
>> B=[[180 710 740 3850 4720]';
>> C=A\B
C =
    2.6866
    19.7222
    10.1242
    30.1099
    48.1132
```

12.8 (a) The solution can be developed using your own software or a package. For example, using MATLAB,

```
>> A=[13.422 0 0 0;
-13.422 12.252 0 0;
0 -12.252 12.377 0;
0 0 -12.377 11.797];
>> W=[750.5 300 102 30]';
>> AI=inv(A)
AI =
    0.0745 0
    0.0816 0.0816 0 0
    0.0808 0.0808 0.0808 0
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

```
        0.0848 0.0848 0.0848 0.0848
>> C=AI*W
C =
    55.9157
    85.7411
    93.1163
    100.2373
```

(b) The element of the matrix that relates the concentration of Havasu (lake 4) to the loading of Powell (lake 1) is $a_{41}^{-1}=0.084767$. This value can be used to compute how much the loading to Lake Powell must be reduced in order for the chloride concentration of Lake Havasu to be 75 as

$$
\Delta W_{1}=\frac{\Delta c_{4}}{a_{41}^{-1}}=\frac{100.2373-75}{0.084767}=297.725
$$

(c) First, normalize the matrix to give

$$
[A]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & -0.91283 & 0 & 0 \\
0 & -0.9899 & 1 & 0 \\
0 & 0 & 1 & -0.95314
\end{array}\right]
$$

The column-sum norm for this matrix is 2 . The inverse of the matrix can be computed as
$[A]^{-1}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 1.095495 & -1.09549 & 0 & 0 \\ 1.084431 & -1.08443 & 1 & 0 \\ 1.137747 & -1.13775 & 1.049165 & -1.04917\end{array}\right]$
The column-sum norm for the inverse can be computed as 4.317672 . The condition number is, therefore, $2(4.317672)=8.635345$. This means that less than 1 digit is suspect $\left[\log _{10}(8.635345)=0.93628\right]$. Interestingly, if the original matrix is unscaled, the same condition number results.
12.9 For the first stage, the mass balance can be written as

$$
F_{1} y_{\mathrm{in}}+F_{2} x_{2}=F_{2} x_{1}+F_{1} x_{1}
$$

Substituting $x=K y$ and rearranging gives
$-\left(1+\frac{F_{2}}{F_{1}} K\right) y_{1}+\frac{F_{2}}{F_{1}} K y_{2}=-y_{\text {in }}$
Using a similar approach, the equation for the last stage is

$$
y_{4}-\left(1+\frac{F_{2}}{F_{1}} K\right) y_{5}=-\frac{F_{2}}{F_{1}} x_{\mathrm{in}}
$$

For interior stages,
$y_{\mathrm{i}-1}-\left(1+\frac{F_{2}}{F_{1}} K\right) y_{\mathrm{i}}+\frac{F_{2}}{F_{1}} K y_{i+1}=0$
These equations can be used to develop the following system,

$$
\left[\begin{array}{ccccc}
9 & -8 & 0 & 0 & 0 \\
-1 & 9 & -8 & 0 & 0 \\
0 & -1 & 9 & -8 & 0 \\
0 & 0 & -1 & 9 & -8 \\
0 & 0 & 0 & -1 & 9
\end{array}\right]\left\{\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5}
\end{array}\right\}=\left\{\begin{array}{c}
0.1 \\
0 \\
0 \\
0 \\
0
\end{array}\right\}
$$

The solution can be developed in a number of ways. For example, using MATLAB,

```
>> format long
>> A=[9 -8 0 0 0;
-1 9 -8 0 0;
0 -1 9 -8 0;
0 0 -1 9 -8;
0 0 0 -1 9];
>> B=[0.1;0;0;0;0];
>> Y=A\B
Y =
    0.01249966621272
    0.00156212448931
    0.00019493177388
    0.00002403268445
    0.00000267029827
```

Note that the corresponding values of X can be computed as

```
>> X=4*Y
x =
    0.04999866485086
    0.00624849795722
    0.00077972709552
    0.00009613073780
    0.00001068119309
```

Therefore, $y_{\text {out }}=0.0000026703$ and $x_{\text {out }}=0.05$. In addition, here is a logarithmic plot of the simulation results versus stage,

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

12.10 Steady-state mass balances for A in each reactor can be written as

$$
\begin{aligned}
& Q_{\mathrm{in}} c_{A, \text { in }}-Q_{\mathrm{in}} c_{A, 1}-k_{1} V_{1} c_{A, 1}=0 \\
& Q_{\mathrm{in}} c_{A, 1}+Q_{32} c_{A, 3}-\left(Q_{\mathrm{in}}+Q_{32}\right) c_{A, 2}-k_{2} V_{2} c_{A, 2}=0 \\
& \left(Q_{\mathrm{in}}+Q_{32}\right) c_{A, 2}+Q_{43} c_{A, 4}-\left(Q_{\mathrm{in}}+Q_{43}\right) c_{A, 3}-k_{3} V_{3} c_{A, 3}=0 \\
& \left(Q_{\mathrm{in}}+Q_{43}\right) c_{A, 3}-\left(Q_{\mathrm{in}}+Q_{43}\right) c_{A, 4}-k_{4} V_{4} c_{A, 4}=0
\end{aligned}
$$

Steady-state mass balances for B in each reactor can be written as

$$
\begin{aligned}
& -Q_{i n} c_{B, 1}+k_{1} V_{1} c_{A, 1}=0 \\
& Q_{\mathrm{in}} c_{B, 1}+Q_{32} c_{B, 3}-\left(Q_{\mathrm{in}}+Q_{32}\right) c_{B, 2}+k_{2} V_{2} c_{A, 2}=0 \\
& \left(Q_{\text {in }}+Q_{32}\right) c_{B, 2}+Q_{43} c_{B, 4}-\left(Q_{\mathrm{in}}+Q_{43}\right) c_{B, 3}+k_{3} V_{3} c_{A, 3}=0 \\
& \left(Q_{\mathrm{in}}+Q_{43}\right) c_{B, 3}-\left(Q_{\mathrm{in}}+Q_{43}\right) c_{B, 4}+k_{4} V_{4} c_{A, 4}=0
\end{aligned}
$$

Values for the parameters can be substituted and the system of equations can be written in matrix form as

$$
\left[\begin{array}{cccccccc}
11.875 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1.875 & 10 & 0 & 0 & 0 & 0 & 0 & 0 \\
-10 & 0 & 26.25 & 0 & -5 & 0 & 0 & 0 \\
0 & -10 & -11.25 & 15 & 0 & -5 & 0 & 0 \\
0 & 0 & -15 & 0 & 53 & 0 & -3 & 0 \\
0 & 0 & 0 & -15 & -40 & 13 & 0 & -3 \\
0 & 0 & 0 & 0 & -13 & 0 & 15.5 & 0 \\
0 & 0 & 0 & 0 & 0 & -13 & -2.5 & 13
\end{array}\right]\left\{\begin{array}{c}
c_{A, 1} \\
c_{B, 1} \\
c_{A, 2} \\
c_{B, 2} \\
c_{A, 3} \\
c_{B, 3} \\
c_{A, 4} \\
c_{B, 4}
\end{array}\right\}=\left\{\begin{array}{c}
10 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right\}
$$

The solution can then be developed. For example, using MATLAB,

```
>> A=[11.875 0 0 0 0 0 0 0;
-1.875 10 0 0 0 0 0 0;
-10 0 26.25 0 -5 0 0 0;
0 -10 -11.25 15 0 -5 0 0;
0 0 -15 0 53 0 -3 0;
0 0 0 -15 40 13 0 -3;
0 0 0 0 -13 0 15.5 0;
0 0 0 0 0 -13 -2.5 13];
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

```
>>B=[10 00 0 0 0 0 0 0
>> C=A\B
C =
    0.8421
    0.1579
    0.3400
    0.9933
    0.1010
    1.8990
    0.0847
    1.9153
```

Therefore, to summarize the results

reactor	\boldsymbol{A}	\boldsymbol{B}
inflow	1	0
1	0.842105	0.157895
2	0.340047	0.993286
3	0.101036	1.898964
4	0.084740	1.915260

Here is a plot of the results:

12.11 Assuming a unit flow for Q_{1}, the simultaneous equations can be written in matrix form as

$$
\left[\begin{array}{cccccc}
-2 & 1 & 2 & 0 & 0 & 0 \\
0 & 0 & -2 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & -2 & 3 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & -1
\end{array}\right]\left\{\begin{array}{l}
Q_{2} \\
Q_{3} \\
Q_{4} \\
Q_{5} \\
Q_{6} \\
Q_{7}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right\}
$$

These equations can then be solved. For example, using MATLAB,

```
>> A=[l-2 1 2 0 0 0;
0 0 -2 1 2 0;
0 0 0 0 -2 3;
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

```
1 1 0 0 0 0;
0 1 -1 -1 0 0;
0 0 0 1 -1 -1];
>> B=[[00 0 0 1 0 0 0 ]';
>> Q=A\B
Q =
    0.5059
    0.4941
    0.2588
    0.2353
    0.1412
    0.0941
```

12.12 The mass balances can be expressed in matrix form as
$\left[\begin{array}{cccccccccc}2.8 & 0 & 0 & 0 & 0 & -0.8 & 0 & 0 & 0 & 0 \\ -2 & 2.8 & 0 & 0 & 0 & 0 & -0.8 & 0 & 0 & 0 \\ 0 & -2 & 2.8 & 0 & 0 & 0 & 0 & -0.8 & 0 & 0 \\ 0 & 0 & -2 & 2.8 & 0 & 0 & 0 & 0 & -0.8 & 0 \\ 0 & 0 & 0 & -2 & 2.8 & 0 & 0 & 0 & 0 & -0.8 \\ -0.8 & 0 & 0 & 0 & 0 & 1.8 & -1 & 0 & 0 & 0 \\ 0 & -0.8 & 0 & 0 & 0 & 0 & 1.8 & -1 & 0 & 0 \\ 0 & 0 & -0.8 & 0 & 0 & 0 & 0 & 1.8 & -1 & 0 \\ 0 & 0 & 0 & -0.8 & 0 & 0 & 0 & 0 & 1.8 & -1 \\ 0 & 0 & 0 & 0 & -0.8 & 0 & 0 & 0 & 0 & 1.8\end{array}\right]\left\{\begin{array}{c}c_{G 1} \\ c_{G 2} \\ c_{G 3} \\ c_{G 4} \\ c_{G 5} \\ c_{L 1} \\ c_{L 2} \\ c_{L 3} \\ c_{L 4} \\ c_{L 5}\end{array}\right\}=\left\{\begin{array}{c}200 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 10\end{array}\right\}$

These equations can then be solved. The results are tabulated and plotted below:

Reactor	Gas	Liquid
0	100	
1	95.73328	85.06649
2	90.2475	76.53306
3	83.19436	65.5615
4	74.12603	51.45521
5	62.46675	33.31856
6		10

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
12.13 Let $x_{i}=$ the volume taken from pit i. Therefore, the following system of equations must hold

$$
\begin{aligned}
& 0.55 x_{1}+0.25 x_{2}+0.25 x_{3}=4800 \\
& 0.30 x_{1}+0.45 x_{2}+0.20 x_{3}=5800 \\
& 0.15 x_{1}+0.30 x_{2}+0.55 x_{3}=5700
\end{aligned}
$$

These can then be solved for $x_{1}=2416.667, x_{2}=9193.333$, and $x_{3}=4690$.
12.14 We can number the nodes as

Node 1:
$\Sigma F_{H}=0=-F_{1} \cos 30^{\circ}-F_{5} \cos 45^{\circ}+F_{3} \cos 45^{\circ}+1200$
$\Sigma F_{V}=0=-F_{1} \sin 30^{\circ}-F_{5} \sin 45^{\circ}-F_{3} \sin 45^{\circ}-600$
Node 2:
$\Sigma F_{H}=0=H_{2}+F_{2}+F_{1} \cos 30^{\circ}$
$\Sigma F_{V}=0=F_{1} \sin 30^{\circ}+V_{2}$
Node 3:
$\Sigma F_{H}=0=-F_{4}-F_{3} \cos 45^{\circ}$
$\Sigma F_{V}=0=V_{3}+F_{3} \sin 45^{\circ}$
Node 4:
$\Sigma F_{H}=0=-F_{2}+F_{4}+F_{5} \cos 45^{\circ}$
$\Sigma F_{V}=0=F_{5} \sin 45^{\circ}-500$
These balances can then be expressed in matrix form as
$\left[\begin{array}{cccccccc}0.866 & 0 & -0.707 & 0 & 0.707 & 0 & 0 & 0 \\ 0.5 & 0 & -0.707 & 0 & 0.707 & 0 & 0 & 0 \\ -0.866 & -1 & 0 & 0 & 0 & -1 & 0 & 0 \\ -0.5 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0.707 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -0.707 & 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 & -0.707 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -0.707 & 0 & 0 & 0\end{array}\right]\left\{\begin{array}{l}F_{1} \\ F_{2} \\ F_{3} \\ F_{4} \\ F_{5} \\ H_{2} \\ V_{2} \\ V_{3}\end{array}\right\}=\left\{\begin{array}{c}1200 \\ -600 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -500\end{array}\right\}$

This system can be solved for

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
$F_{1}=-292.82$
$F_{2}=1453.59$
$F_{3}=-1348.58$
$F_{4}=953.5898$
$F_{5}=707.1068 \quad H_{2}=-1200 \quad V_{2}=146.4102 \quad V_{3}=953.5898$

Note that the horizontal reactions $\left(H_{2}=-1200\right)$ and the vertical reactions $\left(V_{2}+V_{3}=146.4102\right.$ $+953.5898=1100$) are equal to the negative of the imposed loads. This is a good check that the computation is correct.
12.15 We can number the nodes as

Node 1:
$\Sigma F_{H}=0=F_{1}+F_{5} \cos 45^{\circ}-F_{7} \cos 45^{\circ}$
$\Sigma F_{V}=0=-F_{5} \sin 45^{\circ}-F_{7} \sin 45^{\circ}-500$
Node 2:
$\Sigma F_{H}=0=-F_{1}+F_{2} \cos 30^{\circ}-F_{4} \cos 60^{\circ}$
$\Sigma F_{V}=0=-F_{2} \sin 30^{\circ}-F_{4} \sin 60^{\circ}-100$
Node 3:
$\Sigma F_{H}=0=-F_{2} \cos 30^{\circ}-F_{3}$
$\Sigma F_{V}=0=V_{3}+F_{2} \sin 30^{\circ}$
Node 4:
$\Sigma F_{H}=0=F_{3}+F_{4} \cos 60^{\circ}-F_{5} \cos 45^{\circ}-F_{6}$
$\Sigma F_{V}=0=F_{4} \sin 60^{\circ}+F_{5} \sin 45^{\circ}$
Node 5:
$\Sigma F_{H}=0=F_{6}+F_{7} \cos 45^{\circ}+H_{5}$
$\Sigma F_{V}=0=F_{7} \sin 45^{\circ}+V_{5}$
These balances can then be expressed in matrix form as

$$
\left[\begin{array}{cccccccccc}
-1 & 0 & 0 & 0 & -0.707 & 0 & 0.707 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.707 & 0 & 0.707 & 0 & 0 & 0 \\
1 & -0.866 & 0 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.5 & 0 & 0.866 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.866 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -0.5 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & -1 & -0.5 & 0.707 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -0.866 & -0.707 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & -0.707 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -0.707 & 0 & 0 & -1
\end{array}\right]\left\{\begin{array}{c}
F_{1} \\
F_{2} \\
F_{3} \\
F_{4} \\
F_{5} \\
F_{6} \\
F_{7} \\
V_{3} \\
H_{5} \\
V_{5}
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
-500 \\
0 \\
-100 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right\}
$$

This system can be solved for

$F_{1}=-348.334$	$F_{2}=-351.666$	$F_{3}=304.5517$	$F_{4}=87.56443$	$F_{5}=-107.244$
$F_{6}=424.167$	$F_{7}=-599.863$	$V_{3}=175.833$	$H_{5}=0$	$V_{5}=424.167$

12.16 The first two columns of the inverse provide the information to solve this problem

	$F_{1 H}$	$F_{1 V}$
F_{1}	0.866025	0.500000
F_{2}	0.250000	-0.433013
F_{3}	-0.500000	0.866025
H_{2}	-1.000000	0.000000
V_{2}	-0.433013	-0.250000
V_{3}	0.433013	-0.750000

$$
\begin{aligned}
& F_{1}=2000(0.866025)-2500(0.5)=482.0508 \\
& F_{2}=2000(0.25)-2500(-0.433013)=1582.532 \\
& F_{3}=2000(-0.5)-2500(0.866025)=-3165.06 \\
& H_{2}=2000(-1)-2500(0)=-2000 \\
& V_{2}=2000(-0.433013)-2500(-0.25)=-241.025 \\
& V_{3}=2000(0.433013)-2500(-0.75)=2741.025
\end{aligned}
$$

12.17

$\Sigma F_{y}=0$	$V_{2}+V_{3}=1000$
$\Sigma M=0$	$1000(\cos 3 \circlearrowleft) L_{1}-V_{3} L_{2}$
Geometry	$\cos 30^{\circ} L_{1}+\cos 60^{\circ} L_{3}=L_{2}$

Since $V_{2}=250$ and $V_{3}=750$,

$$
\begin{aligned}
& 866 L_{1}-750 L_{2}=0 \\
& 0.866 L_{1}+0.5 L_{3}=L_{2}
\end{aligned}
$$

Therefore,

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$$
L_{3}=\frac{L_{2}-0.866 L_{1}}{0.5}
$$

12.18 We can number the nodes as

Node 1:
$\Sigma F_{H}=0=-F_{1} \cos 45^{\circ}-500$
$\Sigma F_{V}=0=-F_{1} \sin 45^{\circ}-F_{3}$
Node 2:
$\Sigma F_{H}=0=F_{1} \cos 45^{\circ}+F_{2}+F_{5} \cos 60^{\circ}-F_{6} \cos 30^{\circ}$
$\Sigma F_{V}=0=F_{1} \sin 45^{\circ}-F_{5} \sin 60^{\circ}-F_{6} \sin 30^{\circ}$
Node 3:
$\Sigma F_{H}=0=-F_{2}-250$
$\Sigma F_{V}=0=F_{3}-F_{4}$
Node 4:
$\Sigma F_{H}=0=F_{6} \cos 30^{\circ}+F_{7}+H_{4}$
$\Sigma F_{V}=0=F_{6} \sin 30^{\circ}+V_{4}$
Node 5:
$\Sigma F_{H}=0=-F_{7}-F_{5} \cos 60^{\circ}$
$\Sigma F_{V}=0=F_{4}+F_{5} \sin 60^{\circ}+V_{5}$
These balances can then be expressed in matrix form as

$$
\left[\begin{array}{cccccccccc}
0.707 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0.707 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-0.707 & -1 & 0 & 0 & -0.5 & 0.866 & 0 & 0 & 0 & 0 \\
-0.707 & 0 & 0 & 0 & 0.866 & 0.5 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -0.866 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -0.5 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0.5 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & -0.866 & 0 & 0 & 0 & 0 & -1
\end{array}\right]\left\{\begin{array}{c}
F_{1} \\
F_{2} \\
F_{3} \\
F_{4} \\
F_{5} \\
F_{6} \\
F_{7} \\
H_{4} \\
V_{4} \\
V_{5}
\end{array}\right\}=\left\{\begin{array}{c}
-500 \\
0 \\
0 \\
0 \\
-250 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right\}
$$

This system can be solved for

$$
\begin{array}{lllll}
F_{1}=-707.107 & F_{2}=-250 & F_{3}=500 & F_{4}=500 & F_{5}=-58.0127 \\
F_{6}=-899.519 & F_{7}=29.00635 & H_{4}=750 & V_{4}=449.7595 & V_{5}=-449.76
\end{array}
$$

12.19 We can number the nodes as

Node 1:

$$
\begin{aligned}
& \Sigma F_{H}=0=-F_{1} \cos 60^{\circ}+F_{2}+F_{5} \cos 60^{\circ} \\
& \Sigma F_{V}=0=-F_{1} \sin 60^{\circ}-F_{5} \sin 60^{\circ}
\end{aligned}
$$

Node 2:

$$
\begin{aligned}
& \Sigma F_{H}=0=-F_{2}+F_{3} \\
& \Sigma F_{V}=0=-F_{8}
\end{aligned}
$$

Node 3:

$$
\begin{aligned}
& \Sigma F_{H}=0=-F_{3}+F_{6} \cos 45^{\circ}-F_{7} \cos 45^{\circ} \\
& \Sigma F_{V}=0=-F_{6} \sin 45^{\circ}-F_{7} \sin 45^{\circ}
\end{aligned}
$$

Node 4:
$\Sigma F_{H}=0=F_{1} \cos 30^{\circ}+F_{4}+H_{4}$
$\Sigma F_{V}=0=F_{1} \sin 60^{\circ}+V_{4}$
Node 5:
$\Sigma F_{H}=0=-F_{4}-F_{5} \cos 60^{\circ}+F_{7} \cos 45^{\circ}+F_{9}$
$\Sigma F_{V}=0=F_{5} \sin 60^{\circ}+F_{8}+F_{7} \sin 45^{\circ}-5000$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Node 6:
$\Sigma F_{H}=0=-F_{6} \cos 45^{\circ}-F_{9}$
$\Sigma F_{V}=0=F_{6} \sin 45^{\circ}+V_{6}$
Note that $F_{8}=0$. Thus, the middle member is unnecessary unless there is a load with a nonzero vertical component at node 2 . These balances can then be expressed in matrix form as
$\left[\begin{array}{ccccccccccc}0.5 & -1 & 0 & 0 & -0.5 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.866 & 0 & 0 & 0 & 0.866 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -0.707 & 0.707 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0.707 & 0.707 & 0 & 0 & 0 & 0 \\ -0.5 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ -0.866 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0.5 & 0 & -0.707 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -0.866 & 0 & -0.707 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0.707 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -0.707 & 0 & 0 & 0 & 0 & 1\end{array}\right]\left\{\begin{array}{c}F_{1} \\ F_{2} \\ F_{3} \\ F_{4} \\ F_{5} \\ F_{6} \\ F_{7} \\ F_{9} \\ H_{4} \\ V_{4} \\ V_{6}\end{array}\right\}=\left\{\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -5000 \\ 0 \\ 0\end{array}\right\}$

This system can be solved for

$$
\begin{array}{lllll}
F_{1}=-3660.25 & F_{2}=-3660.25 & F_{3}=-3660.25 & F_{4}=1830.127 & F_{5}=-3660.25 \\
F_{6}=-2588.19 & F_{7}=2588.19 & F_{9}=1830.13 & H_{4}=0 & V_{4}=3169.87
\end{array}
$$

$$
V_{6}=1830.13
$$

12.20 (a)

Room 1:
$0=W_{\text {smoker }}+Q_{a} c_{a}-Q_{a} c_{1}+E_{13}\left(c_{3}-c_{1}\right)$
Room 2:
$0=Q_{b} c_{b}+\left(Q_{a}-Q_{d}\right) c_{4}-Q_{c} c_{2}+E_{24}\left(c_{4}-c_{2}\right)$
Room 3:
$0=W_{\text {grill }}+Q_{a} c_{1}+E_{13}\left(c_{1}-c_{3}\right)+E_{34}\left(c_{4}-c_{3}\right)-Q_{a} c_{3}$
Room 4:
$0=Q_{a} c_{3}+E_{34}\left(c_{3}-c_{4}\right)+E_{24}\left(c_{2}-c_{4}\right)-Q_{a} c_{4}$
Substituting the parameters yields

$$
\left[\begin{array}{cccc}
225 & 0 & -25 & 0 \\
0 & 175 & 0 & -125 \\
-225 & 0 & 275 & -50 \\
0 & -25 & -250 & 275
\end{array}\right]\left\{\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right\}=\left\{\begin{array}{c}
1400 \\
100 \\
2000 \\
0
\end{array}\right\}
$$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

These can be solved for

$$
\left\{\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right\}=\left\{\begin{array}{c}
8.0996 \\
12.3448 \\
16.8966 \\
16.4828
\end{array}\right\}
$$

(b) The matrix inverse can be determined as
$[A]^{-1}=\left[\begin{array}{cccc}0.004996 & 0.0000153 & 0.000552 & 0.000107 \\ 0.003448 & 0.006207 & 0.003448 & 0.003448 \\ 0.004966 & 0.000138 & 0.004966 & 0.000966 \\ 0.004828 & 0.00069 & 0.004828 & 0.004828\end{array}\right]$
The percent of the carbon monoxide in the kids' section due to each source can be computed as
(i) the smokers

$$
\begin{aligned}
& \left.c_{2, \text { smokers }}=a_{21}^{-1} W_{\text {smokers }}=0.0034481000\right)=3.448 \\
& \%_{\text {smokers }}=\frac{3.448}{12.3448} \times 100 \%=27.93 \%
\end{aligned}
$$

(ii) the grill

$$
\begin{aligned}
& c_{2, \text { grill }}=a_{31}^{-1} W_{\text {girll }}=0.003448(2000)=6.897 \\
& \%_{\text {grill }}=\frac{6.897}{12.3448} \times 100 \%=55.87 \%
\end{aligned}
$$

(iii) the intakes

$$
\begin{aligned}
& c_{2, \text { intakes }}=a_{21}^{-1} Q_{a} c_{a}+a_{22}^{-1} Q_{b} c_{b}=0.003448(200) 2+0.006207(50) 2=1.37931+0.62069=2 \\
& \%_{\text {grill }}=\frac{2}{12.3448} \times 100 \%=16.20 \%
\end{aligned}
$$

(c) If the smoker and grill loads are increased by 1000 and $3000 \mathrm{mg} / \mathrm{hr}$, respectively, the concentration in the kids' section will be increased by

$$
\begin{array}{r}
\left.\Delta c_{2}=a_{21}^{-1} \Delta W_{\text {smoker }}+a_{23}^{-1} \Delta W_{\text {grill }}=0.003448(2000-1000)+0.0034485000-2000\right) \\
=3.448+10.3448=13.7931
\end{array}
$$

(d) If the mixing between the kids' area and zone 4 is decreased to 5 , the system of equations is changed to
$\left[\begin{array}{cccc}225 & 0 & -25 & 0 \\ 0 & 155 & 0 & -105 \\ -225 & 0 & 275 & -50 \\ 0 & -5 & -250 & 255\end{array}\right]\left\{\begin{array}{l}c_{1} \\ c_{2} \\ c_{3} \\ c_{4}\end{array}\right\}=\left\{\begin{array}{c}1400 \\ 100 \\ 2000 \\ 0\end{array}\right\}$
which can be solved for

$$
\left\{\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right\}=\left\{\begin{array}{c}
8.1084 \\
12.0800 \\
16.9760 \\
16.8800
\end{array}\right\}
$$

Therefore, the concentration in the kids' area would be decreased $0.26483 \mathrm{mg} / \mathrm{m}^{3}$ or 2.145%.

12.21 The coordinates of the connection points are

D: $(0,0,2.4)$
A: $(0.8,-0.6,0)$
B: $(-0.8,-0.6,0)$
C: $(0,1,0)$
The lengths of the legs can be computed as

$$
\begin{aligned}
& D A=\sqrt{0.8^{2}+0.6^{2}+2.4^{2}}=2.6 \\
& D B=\sqrt{0.8^{2}+0.6^{2}+2.4^{2}}=2.6 \\
& D C=\sqrt{0^{2}+1^{2}+2.4^{2}}=2.6
\end{aligned}
$$

Assume that each leg is in tension, which mean that each pulls on point D.

The direction cosines of the vectors A, B and C can be determined as
A: $\left(\frac{4}{13},-\frac{3}{13},-\frac{12}{13}\right)$

B: $\left(-\frac{4}{13},-\frac{3}{13},-\frac{12}{13}\right)$
$\mathbf{C}:\left(0, \frac{5}{13},-\frac{12}{13}\right)$
Force balances for point D can then be written as

$$
\begin{aligned}
& \sum F_{x}=\frac{4}{13} A-\frac{4}{13} B=0 \\
& \sum F_{y}=-\frac{3}{13} A-\frac{3}{13} B+\frac{5}{13} C=0 \\
& \sum F_{z}=-\frac{12}{13} A-\frac{12}{13} B-\frac{12}{13} C+20=0
\end{aligned}
$$

Thus, the solution amounts to solving the following system of linear algebraic equations

$$
\begin{aligned}
0.30769 A-0.30769 B & =0 \\
-0.23077 A-0.23077 B+0.38462 C & =0 \\
-0.92308 A-0.92308 B-0.92308 C & =-20
\end{aligned}
$$

These equations can be solved with Gauss elimination for $A=6.7708, B=6.7708$, and $C=$ 8.125.
12.22 The solution can be generated in a number of ways. For example, using MATLAB,

```
>> A=[lllllllllllll}
    0 0 1 0 0 0 0 1 0 0;
    0 1 0 3/5 0 0 0 0 0 0;
    -1 0 0 -4/5 0 0 0 0 0 0;
    0 -1 0 0 0 0 3/5 0 0 0;
    0}00000 -1 0 -4/5 0 0 0;
    0 0 -1 -3/5 0 1 0 0 0 0;
    0 0 0 4/5 1 0 0 0 0 0;
    0 0 0 0 0 -1 -3/5 0 0 0;
    0 0 0 0 0 0 4/5 0 0 1];
>> B=[[0 0 -74 0 0 24 0}000000]'
>> x=A\B
x =
    37.3333
    -46.0000
        74.0000
    -46.6667
        37.3333
        46.0000
    -76.6667
    -74.0000
    -37.3333
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

```
61.3333
```

Therefore, in kN

$$
\begin{array}{lllll}
A B=37.3333 & B C=-46 & A D=74 & B D=-46.6667 & C D=37.3333 \\
D E=46 & C E=-76.6667 & A_{x}=-74 & A_{y}=-37.33333 & E_{y}=61.3333
\end{array}
$$

12.23 The simultaneous equations are

$$
\left[\begin{array}{cccccc}
1 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & -1 & 0 \\
0 & 0 & -1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & -1 \\
0 & 5 & -15 & 0 & -5 & -2 \\
10 & -5 & 0 & -25 & 0 & 0
\end{array}\right]\left\{\begin{array}{l}
i_{12} \\
i_{52} \\
i_{32} \\
i_{65} \\
i_{54} \\
i_{43}
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
200
\end{array}\right\}
$$

This system can be solved in a number of ways. For example, using MATLAB,

```
>> A=[llllllll
0 -1 0 1 -1 0;
0 0 -1 0 0 1;
0 0 0 0 1 -1;
0 -15 0 -5 -2;
10 -5 0 -25 0 0];
>> B=[0 0 0 0 0 200]';
>> I=A\B
I =
        5.1185
        -4.1706
        -0.9479
        -5.1185
        -0.9479
        -0.9479
```


Here are the resulting currents superimposed on the circuit:

12.24 The current equations can be written as

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
$-i_{21}-i_{23}+i_{52}=0$
$i_{23}-i_{35}+i_{43}=0$
$-i_{43}+i_{54}=0$
$i_{35}-i_{52}+i_{65}-i_{54}=0$

Voltage equations:
$i_{21}=\frac{V_{2}-10}{35} \quad i_{54}=\frac{V_{5}-V_{4}}{15}$
$i_{23}=\frac{V_{2}-V_{3}}{30} \quad i_{35}=\frac{V_{3}-V_{5}}{7}$
$i_{43}=\frac{V_{4}-V_{3}}{8} \quad i_{52}=\frac{V_{5}-V_{2}}{10}$
$i_{65}=\frac{150-V_{5}}{5}$
$\left[\begin{array}{ccccccccccc}-1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 35 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 30 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 15 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 7 & 0 & 0 & 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 10 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 5 & 0 & 0 & 0 & 1\end{array}\right]\left\{\begin{array}{c}i_{21} \\ i_{23} \\ i_{52} \\ i_{35} \\ i_{43} \\ i_{54} \\ i_{65} \\ V_{2} \\ V_{3} \\ V_{4} \\ V_{5}\end{array}\right\}=\left\{\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ -10 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 150\end{array}\right\}$
This system can be solved for

$$
\begin{array}{lllll}
i_{21}=2.9291 & i_{23}=-0.6457 & i_{52}=2.2835 & i_{35}=-0.4950 & i_{43}=0.1507 \\
i_{54}=0.1507 & i_{65}=2.9291 & V_{2}=112.5196 & V_{3}=131.8893 & V_{4}=133.0945
\end{array}
$$

$$
V_{5}=135.3543
$$

12.25 The current equations can be written as
$i_{32}-i_{25}+i_{12}=0$
$-i_{32}-i_{34}+i_{63}=0$
$i_{34}-i_{47}=0$
$i_{25}+i_{65}-i_{58}=0$
PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
$i_{76}-i_{63}-i_{65}=0$
$i_{47}-i_{76}+i_{97}=0$
$i_{58}-i_{89}-i_{80}=0$
$i_{89}-i_{97}=0$

Voltage equations:

$$
\begin{aligned}
& -20 i_{25}+10 i_{65}-5 i_{63}-5 i_{32}=0 \\
& 5 i_{63}+20 i_{76}+5 i_{47}+20 i_{34}=0 \\
& -50 i_{58}-15 i_{89}-0 i_{97}-20 i_{76}-10 i_{65}=0 \\
& 120-20 i_{25}-50 i_{58}=40
\end{aligned}
$$

$$
\left[\begin{array}{cccccccccccc}
1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & -1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 \\
5 & 20 & 0 & 0 & 5 & 0 & -10 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -20 & -5 & -5 & 0 & 0 & -20 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 10 & 50 & 20 & 0 & 15 & 0 \\
0 & 20 & 0 & 0 & 0 & 0 & 0 & 50 & 0 & 0 & 0 & 0
\end{array}\right]\left\{\begin{array}{l}
i_{32} \\
i_{25} \\
i_{12} \\
i_{34} \\
i_{63} \\
i_{47} \\
i_{65} \\
i_{58} \\
i_{76} \\
i_{97} \\
i_{89} \\
i_{80}
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
80
\end{array}\right\}
$$

This system can be solved for

$$
\begin{array}{lllll}
i_{32}=-2.5670 & i_{25}=1.0449 & i_{12}=3.6119 & i_{34}=1.2287 & i_{63}=-1.3384 \\
i_{47}=1.2287 & i_{65}=0.1371 & i_{58}=1.1820 & i_{76}=-1.2012 & i_{97}=-2.4299 \\
i_{89}=-2.4299 & i_{80}=3.6119 & & &
\end{array}
$$

12.26 Let $c_{i}=$ component i. Therefore, the following system of equations must hold

$$
\begin{aligned}
& 15 c_{1}+17 c_{2}+19 c_{3}=3890 \\
& 0.30 c_{1}+0.40 c_{2}+0.55 c_{3}=95 \\
& 1.0 c_{1}+1.2 c_{2}+1.5 c_{3}=282
\end{aligned}
$$

These can then be solved for $c_{1}=90, c_{2}=60$, and $c_{3}=80$.
12.27 First, we can number the loops and assume that the currents are clockwise.

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Kirchhoff's voltage law can be applied to each loop.

$$
\begin{aligned}
& -V_{1}+R_{1} i_{1}+R_{4}\left(i_{1}-i_{2}\right)=0 \\
& R_{4}\left(i_{2}-i_{1}\right)+R_{2} i_{2}+R_{5}\left(i_{2}-i_{3}\right)=0 \\
& R_{5}\left(i_{3}-i_{2}\right)+R_{3} i_{3}+V_{2}=0
\end{aligned}
$$

Collecting terms, the system can be written in matrix form as

$$
\left[\begin{array}{ccc}
20 & -15 & 0 \\
-15 & 50 & -25 \\
0 & -25 & 45
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3}
\end{array}\right\}=\left\{\begin{array}{c}
80 \\
0 \\
-50
\end{array}\right\}
$$

This can be solved with a tool like MATLAB,

```
>A=[20 -15 0;-15 50 -25;0 -25 45];
>> B=[80;0;-50];
>> I=A\B
I =
    4.9721
    1.2961
    -0.3911
```

Therefore, $I_{1}=4.9721, I_{2}=1.2961$, and $I_{3}=-0.3911$.
12.28 This problem can be solved by applying Kirchhoff's voltage law to each loop.

$$
\begin{aligned}
& -20+4\left(i_{1}-i_{2}\right)+2\left(i_{1}-i_{3}\right)=0 \\
& 4\left(i_{2}-i_{1}\right)+6 i_{2}+8\left(i_{2}-i_{3}\right)=0 \\
& 8\left(i_{3}-i_{2}\right)+5 i_{3}+2\left(i_{3}-i_{1}\right)=0
\end{aligned}
$$

Collecting terms, the system can be written in matrix form as

$$
\left[\begin{array}{ccc}
6 & -4 & -2 \\
-4 & 18 & -8 \\
-2 & -8 & 15
\end{array}\right]\left\{\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3}
\end{array}\right\}=\left\{\begin{array}{c}
20 \\
0 \\
0
\end{array}\right\}
$$

This can be solved with a tool like MATLAB,

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

```
> A=[[6 -4 -2;-4 18 -8;-2 -8 15];
>> B=[20;0;0];
>> I=A\B
I =
    5.1759
    1.9095
    1.7085
```

Therefore, $I_{1}=5.1759, I_{2}=1.9095$, and $I_{3}=1.7085$.
12.29 This problem can be solved directly on a calculator capable of doing matrix operations or on MATLAB.

```
>> b=[-200;-250;100];
>> a=[55 0 -25;0 -37 -4;-25 -4 29];
>> b=[-200;-250;100];
>> x=a\b
x =
    -2.7278
        6.5407
        1.9989
```

Therefore, $I_{1}=-2.7278 \mathrm{~A}, I_{3}=6.5407 \mathrm{~A}$, and $I_{4}=1.9989 \mathrm{~A}$
12.30 This problem can be solved directly on a calculator capable of doing matrix operations or on MATLAB.

```
>> a=[60 -40 0
    -40 150 -100
    0 -100 130];
>> b=[200
    0
    230];
>> x=a\b
x =
    7.7901
    6.6851
    6.9116
```

Therefore, $I_{1}=7.79 \mathrm{~A}, I_{2}=6.69 \mathrm{~A}$, and $I_{3}=6.91 \mathrm{~A}$.
12.31 At steady state, the force balances can be written as

$$
\begin{array}{r}
4 k x_{1}-3 k x_{2} \quad=m_{1} g \\
-3 k x_{1}+4 k x_{2}-k x_{3}=m_{2} g \\
-k x_{2}+k x_{3}=m_{3} g
\end{array}
$$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Substituting the parameter values

$$
\left[\begin{array}{ccc}
120 & -90 & 0 \\
-90 & 120 & -30 \\
0 & -30 & 30
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\}=\left\{\begin{array}{l}
19.6 \\
29.4 \\
24.5
\end{array}\right\}
$$

The solution is $x_{1}=2.45, x_{2}=3.049$, and $x_{3}=3.866$.
12.32 At steady state, the force balances can be written as

$$
\left[\begin{array}{ccc}
30 & -20 & 0 \\
-20 & 30 & -10 \\
0 & -10 & -10
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\}=\left\{\begin{array}{c}
98 \\
34.3 \\
19.6
\end{array}\right\}
$$

The solution is $x_{1}=15.19, x_{2}=17.885$, and $x_{3}=19.845$.
12.33 The force balances can be written as

$$
\left[\begin{array}{cccc}
k_{1}+k_{2} & -k_{2} & 0 & 0 \\
-k_{2} & k_{2}+k_{3} & -k_{3} & 0 \\
0 & -k_{3} & k_{3}+k_{4} & -k_{4} \\
0 & 0 & -k_{4} & k_{4}
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0 \\
0 \\
F
\end{array}\right\}
$$

Substituting the parameter values

$$
\left[\begin{array}{cccc}
150 & -50 & 0 & 0 \\
-50 & 130 & -80 & 0 \\
0 & -80 & 280 & -200 \\
0 & 0 & -200 & 200
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
0 \\
0 \\
1500(9.8)
\end{array}\right\}
$$

The solution is $x_{1}=147, x_{2}=441, x_{3}=624.75$, and $x_{4}=698.25$.
12.34 The equations can be solved in a number of ways. For example, using MATLAB,

```
>> A=[100 1 0;50 -1 1;25 0 -1];
>> B=[519.72;216.55;108.27];
>> x=A\B
x =
        4.8259
    37.1257
    12.3786
```

Therefore, $a=4.8259, T=37.1257$, and $R=12.3786$.
12.35 In order to solve this problem, we must assume the direction that the blocks are moving. For example, we can assume that the blocks are moving from left to right as shown

Force balances can be written for each block:

$-196-67.896+T=40 a$

$-49-T+R-42.435=10 a$

$$
424.352-73.5-R=50 a
$$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Therefore, the system of equations to be solved can be written in matrix form as

$$
\left[\begin{array}{ccc}
40 & -1 & 0 \\
10 & 1 & -1 \\
50 & 0 & 1
\end{array}\right]\left\{\begin{array}{l}
a \\
T \\
R
\end{array}\right\}=\left\{\begin{array}{c}
-263.8964 \\
-91.43524 \\
350.852
\end{array}\right\}
$$

The solution is $a=-0.044792, T=262.1047$, and $R=353.092$.
Note that if we had assumed that the blocks were moving from right to left, the system of equations would have been

$$
\left[\begin{array}{ccc}
40 & 1 & 0 \\
10 & -1 & 1 \\
50 & 0 & -1
\end{array}\right]\left\{\begin{array}{l}
a \\
T \\
R
\end{array}\right\}=\left\{\begin{array}{l}
128.1036 \\
6.564755 \\
-497.852
\end{array}\right\}
$$

The solution for this case is $a=-3.63184, T=273.3772$, and $R=316.2604$.
12.36 In order to solve this problem, we must assume the direction that the blocks are moving. For example, we can assume that the blocks are moving from right to left as shown

Force balances can be written for each block:

$103.94-T-83.16=15 a$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$T+69.3-R-13.86=10 a$

$R-78.4-S=8 a$

$S-49=5 a$
Therefore, the system of equations to be solved can be written in matrix form as

$$
\left[\begin{array}{cccc}
15 & 1 & 0 & 0 \\
10 & -1 & 1 & 0 \\
8 & 0 & -1 & 1 \\
5 & 0 & 0 & -1
\end{array}\right]\left\{\begin{array}{l}
a \\
T \\
R \\
S
\end{array}\right\}=\left\{\begin{array}{c}
20.789 \\
55.437 \\
-78.4 \\
-49
\end{array}\right\}
$$

The solution is $a=-1.347, T=40.989, R=109.893$, and $S=42.267$.

Note that if we had assumed that the blocks were moving from left to right, the system of equations would have been
$\left[\begin{array}{cccc}15 & -1 & 0 & 0 \\ 10 & 1 & -1 & 0 \\ 8 & 0 & 1 & -1 \\ 5 & 0 & 0 & 1\end{array}\right]\left\{\begin{array}{l}a \\ T \\ S \\ R\end{array}\right\}=\left\{\begin{array}{c}-187.1005 \\ -83.15576 \\ 78.4 \\ 49\end{array}\right\}$

The solution for this case is $a=-3.759374, T=130.7098, R=176.27186$, and $S=67.79687$.
12.37 This problem can be solved in a number of ways. For example, using MATLAB,

```
%prob1237.m
k1=10;k2=30;k3=30;k4=10;
m1=2;m2=2;m3=2;
km=[(1/m1)* (k2+k1),-(k2/m1),0;
    -(k2/m2),(1/m2)* (k2+k3),-(k3/m2);
    0,-(k3/m3),(1/m3)* (k3+k4)]
x=[0.05;0.04;0.03]
kmx=km*x
>> prob1237
km =
    20 -15 0
    -15 30 -15
            0 -15 20
x =
    0.0500
    0.0400
    0.0300
kmx =
    0.4000
    0
    0
```

Therefore, $\ddot{x}_{1}=-0.4, \ddot{x}_{2}=0$, and $\ddot{x}_{3}=0 \mathrm{~m} / \mathrm{s}^{2}$.
12.38 (a) Substituting the parameters gives
$\frac{d^{2} T}{d x^{2}}+h^{\prime}\left(T_{a}-T\right)=0$
An analytical solution can be derived in a number of ways. One way is to assume a solution of the form

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
$T=A+B e^{\lambda x}+C e^{\lambda x}$
Differentiating twice gives
$T^{\prime \prime}=\lambda^{2} B e^{\lambda x}+\lambda^{2} C e^{\lambda x}$
Substituting these into the original differential equation yields
$\lambda^{2} B e^{\lambda x}+\lambda^{2} C e^{\lambda x}+h^{\prime}\left(T_{a}-A-B e^{\lambda x}-C e^{\lambda x}\right)=0$
Equating like terms yields
$\lambda^{2} B e^{\lambda x}=h^{\prime} B e^{\lambda T}$
$\lambda^{2} C e^{\lambda x}=h^{\prime} C e^{\lambda T}$
$h^{\prime} T_{a}=h^{\prime} A$

The first two equations give $\lambda= \pm \sqrt{h^{\prime}}$. The equation third gives $A=T_{a}$. Therefore, the solution is
$T=T_{a}+B e^{\sqrt{h^{\prime}} x}+C e^{-\sqrt{h^{\prime}} x}$
The unknown constants can be evaluated from the boundary conditions
$40=20+B+C$
$200=20+B e^{\sqrt{0.02}(10)}+C e^{-\sqrt{0.02}(10)}$
These simultaneous equations can be solved for $B=45.25365$ and $C=-25.25365$. Therefore, the analytical solution is

$$
T=20+45.25365 e^{0.14142 k}-25.25365 e^{-0.14142 k}
$$

(b) Substituting the parameters into the finite-difference equation gives

$$
-T_{i-1}+2.08 T_{i}-T_{i+1}=1.6
$$

An analytical solution can be derived in a number of ways. A nice approach is to employ L This equation can be written for each node to yield the following system of equations,

$$
\left[\begin{array}{cccc}
2.08 & -1 & 0 & 0 \\
-1 & 2.08 & -1 & 0 \\
0 & -1 & 2.08 & -1 \\
0 & 0 & -1 & 2.08
\end{array}\right]\left\{\begin{array}{l}
T_{1} \\
T_{2} \\
T_{3} \\
T_{4}
\end{array}\right\}=\left\{\begin{array}{c}
41.6 \\
1.6 \\
1.6 \\
201.6
\end{array}\right\}
$$

These can be solved for $T_{1}=61.0739, T_{2}=85.4338, T_{3}=115.0283$, and $T_{4}=152.2252$. A plot of the results is shown below (circles). In addition, the plot also shows the analytical solution (line) that was developed in (a):

12.39 Substituting centered difference finite differences, the Laplace equation can be written for the node $(1,1)$ as
$0=\frac{T_{21}-2 T_{11}+T_{01}}{\Delta x^{2}}+\frac{T_{12}-2 T_{11}+T_{10}}{\Delta y^{2}}$

Because the grid is square ($\Delta x=\Delta y$), this equation can be expressed as
$0=T_{21}-4 T_{11}+T_{01}+T_{12}+T_{10}$
The boundary node values ($T_{01}=100$ and $T_{10}=75$) can be substituted to give
$4 T_{11}-T_{12}-T_{21}=175$
The same approach can be written for the other interior nodes. When this is done, the following system of equations results

$$
\left[\begin{array}{cccc}
4 & -1 & -1 & 0 \\
-1 & 4 & 0 & -1 \\
-1 & 0 & 4 & -1 \\
0 & -1 & -1 & 4
\end{array}\right]\left\{\begin{array}{l}
T_{11} \\
T_{12} \\
T_{21} \\
T_{22}
\end{array}\right\}=\left\{\begin{array}{c}
175 \\
125 \\
75 \\
25
\end{array}\right\}
$$

These equations can be solved using the Gauss-Seidel method. For example, the first iteration would be
$T_{11}=\frac{175+T_{12}+T_{21}}{4}=\frac{175+0+0}{4}=43.75$
$T_{12}=\frac{125+T_{11}+T_{22}}{4}=\frac{125+43.75+0}{4}=42.1875$

$$
\begin{aligned}
& T_{21}=\frac{75+T_{11}+T_{22}}{4}=\frac{75+43.75+0}{4}=29.6875 \\
& T_{22}=\frac{25+T_{12}+T_{21}}{4}=\frac{25+42.1875+29.6875}{4}=24.21875
\end{aligned}
$$

The computation can be continued as follows:

iteration	unknown	value	$\boldsymbol{\varepsilon}_{\boldsymbol{a}}$	maximum $\boldsymbol{\varepsilon}_{\boldsymbol{a}}$
1	x_{1}	43.75	100.00%	
	x_{2}	42.1875	100.00%	
	x_{3}	29.6875	100.00%	
	x_{4}	24.21875	100.00%	100.00%
2	x_{1}	61.71875	29.11%	
	x_{2}	52.73438	20.00%	
	x_{3}	40.23438	26.21%	
	x_{4}	29.49219	17.88%	29.11%
3	x_{1}	66.99219	7.87%	
	x_{2}	55.37109	4.76%	
	x_{3}	42.87109	6.15%	
	x_{4}	30.81055	4.28%	7.87%
4	x_{1}	68.31055	1.93%	
	x_{2}	56.03027	1.18%	
	x_{3}	43.53027	1.51%	
	x_{4}	31.14014	1.06%	1.93%
5	x_{1}	68.64014	0.48%	
	x_{2}	56.19507	0.29%	
	x_{3}	43.69507	0.38%	
	x_{4}	31.22253	0.26%	0.48%

Thus, after 5 iterations, the maximum error is 0.48% and we are converging on the final result: $T_{11}=68.64, T_{12}=56.195, T_{21}=43.695$, and $T_{22}=31.22$.
12.40 Find the unit vectors:

$$
\begin{aligned}
& A\left(\frac{1 \hat{i}-2 \hat{j}-4 \hat{k}}{\sqrt{1^{2}+2^{2}+4^{2}}}\right)=0.218 \hat{i}-0.436 \hat{j}-0.873 \hat{k} \\
& B\left(\frac{2 \hat{i}+1 \hat{j}-4 \hat{k}}{\sqrt{1^{2}+2^{2}+4^{2}}}\right)=0.436 \hat{i}+0.218 \hat{j}-0.873 \hat{k}
\end{aligned}
$$

Sum moments about the origin:

$$
\begin{aligned}
& \sum M_{o x}=50(2)-0.436 B(4)-0.218 A(4)=0 \\
& \sum M_{o y}=0.436 A(4)-0.218 B(4)=0
\end{aligned}
$$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Solve for A and B using equations 9.10 and 9.11:
In the form $\begin{aligned} & a_{11} x_{1}+a_{12} x_{2}=b_{1} \\ & a_{21} x_{2}+a_{22} x_{2}=b_{2}\end{aligned}$

$$
\begin{aligned}
& -0.872 A-1.744 B=-100 \\
& 1.744 A-0.872 B=0
\end{aligned}
$$

Plug into equations 9.10 and 9.11:

$$
\begin{aligned}
& A=\frac{a_{22} b_{1}-a_{12} b_{2}}{a_{11} a_{22}-a_{12} a_{21}}=\frac{87.2}{3.80192}=22.94 \mathrm{~N} \\
& B=\frac{a_{11} b_{2}-a_{21} b_{1}}{a_{11} a_{22}-a_{12} a_{21}}=\frac{174.4}{3.80192}=45.87 \mathrm{~N}
\end{aligned}
$$

