CHAPTER 13

13.1 (a) The function can be differentiated to give

$$
f^{\prime}(x)=-2 x+8
$$

This function can be set equal to zero and solved for $x=8 / 2=4$. The derivative can be differentiated to give the second derivative

$$
f^{\prime \prime}(x)=-2
$$

Because this is negative, it indicates that the function has a maximum at $x=4$.
(b) Using Eq. 13.7

$$
\left.\begin{array}{ll}
x_{0}=0 & f\left(x_{0}\right)=-12 \\
x_{1}=2 & f\left(x_{1}\right)=0 \\
x_{2}=6 & f\left(x_{2}\right)=0
\end{array}\right] \begin{array}{ll}
\\
x_{3}=\frac{-12(4-36)+0(36-0)+0(0-4)}{2(-12)(2-6)+2(0)(6-0)+2(0)(0-2)}=4
\end{array}
$$

13.2 (a) The function can be plotted

(b) The function can be differentiated twice to give

$$
f^{\prime \prime}(x)=-45 x^{4}-24 x^{2}
$$

Thus, the second derivative will always be negative and hence the function is concave for all values of x.
(c) Differentiating the function and setting the result equal to zero results in the following roots problem to locate the maximum

$$
f^{\prime}(x)=0=-9 x^{5}-8 x^{3}+12
$$

A plot of this function can be developed

A technique such as bisection can be employed to determine the root. Here are the first few iterations:

iteration	$\boldsymbol{x}_{\boldsymbol{l}}$	$\boldsymbol{x}_{\boldsymbol{u}}$	$\boldsymbol{x}_{\boldsymbol{r}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{\prime}}\right)$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{r}}\right)$	$\boldsymbol{f}\left(\boldsymbol{\boldsymbol { x } _ { \boldsymbol { l } }) \times \boldsymbol { f } (\boldsymbol { x } _ { \boldsymbol { r } })}\right.$	$\boldsymbol{\varepsilon}_{\mathbf{a}}$
1	0.00000	2.00000	1.00000	12	-5	-60.0000	
2	0.00000	1.00000	0.50000	12	10.71875	128.6250	100.00%
3	0.50000	1.00000	0.75000	10.71875	6.489258	69.5567	33.33%
4	0.75000	1.00000	0.87500	6.489258	2.024445	13.1371	14.29%
5	0.87500	1.00000	0.93750	2.024445	-1.10956	-2.2463	6.67%

The approach can be continued to yield a result of $x=0.91692$.
13.3 First, the golden ratio can be used to create the interior points,
$d=\frac{\sqrt{5}-1}{2}(2-0)=1.2361$
$x_{1}=0+1.2361=1.2361$
$x_{2}=2-1.2361=0.7639$
The function can be evaluated at the interior points
$f\left(x_{2}\right)=f(0.7639)=8.1879$
$f\left(x_{1}\right)=f(1.2361)=4.8142$
Because $f\left(x_{2}\right)>f\left(x_{1}\right)$, the maximum is in the interval defined by x_{1}, x_{2}, and x_{1}. where x_{2} is the optimum. The error at this point can be computed as
$\varepsilon_{a}=(1-0.61803)\left|\frac{2-0}{0.7639}\right| \times 100 \%=100 \%$
For the second iteration, $x_{l}=0$ and $x_{u}=1.2361$. The former x_{2} value becomes the new x_{1}, that is, $x_{1}=0.7639$ and $f\left(x_{1}\right)=8.1879$. The new values of d and x_{2} can be computed as

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$$
\begin{aligned}
& d=\frac{\sqrt{5}-1}{2}(1.2361-0)=0.7639 \\
& x_{2}=1.2361-0.7639=0.4721
\end{aligned}
$$

The function evaluation at $f\left(x_{2}\right)=5.5496$. Since this value is less than the function value at x_{1}, the maximum is in the interval prescribed by x_{2}, x_{1} and x_{u}. The process can be repeated and all three iterations summarized as

\boldsymbol{i}	$\boldsymbol{x}_{\boldsymbol{l}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$	$\boldsymbol{x}_{\boldsymbol{2}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\mathbf{2}}\right)$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\mathbf{1}}\right)$	$\boldsymbol{x}_{\boldsymbol{u}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{u}}\right)$	\boldsymbol{d}	$\boldsymbol{x}_{\text {opt }}$	$\boldsymbol{\boldsymbol { \varepsilon } _ { \boldsymbol { a } }}$
1	0.0000	0.0000	0.7639	8.1879	1.2361	4.8142	2.0000	-104.0000	1.2361	0.7639	100.00%
2	0.0000	0.0000	0.4721	5.5496	0.7639	8.1879	1.2361	4.8142	0.7639	0.7639	61.80%
3	0.4721	5.5496	0.7639	8.1879	0.9443	8.6778	1.2361	4.8142	0.4721	0.9443	30.90%

13.4 First, the function values at the initial values can be evaluated
$f\left(x_{0}\right)=f(0)=0$
$f\left(x_{1}\right)=f(1)=8.5$
$f\left(x_{2}\right)=f(2)=-104$
and substituted into Eq. (13.7) to give,
$x_{3}=\frac{0\left(1^{2}-2^{2}\right)+8.5\left(2^{2}-0^{2}\right)+(-104)\left(0^{2}-1^{2}\right)}{2(0)(1-2)+2(8.5)(2-0)+2(-104)(0-1)}=0.570248$
which has a function value of $f(0.570248)=6.5799$. Because the function value for the new point is lower than for the intermediate point $\left(x_{1}\right)$ and the new x value is to the left of the intermediate point, the lower guess $\left(x_{0}\right)$ is discarded. Therefore, for the next iteration,
$f\left(x_{0}\right)=f(0.570248)=6.6799$
$f\left(x_{1}\right)=f(1)=8.5$
$f\left(x_{2}\right)=f(2)=-104$
which can be substituted into Eq. (13.7) to give $x_{3}=0.812431$, which has a function value of $f(0.812431)=8.446523$. At this point, an approximate error can be computed as

$$
\varepsilon_{a}=\left|\frac{0.81243-0.570248}{0.81243}\right| \times 100 \%=29.81 \%
$$

The process can be repeated, with the results tabulated below:

\boldsymbol{i}	\boldsymbol{x}_{0}	$\boldsymbol{f}\left(\boldsymbol{x}_{0}\right)$	\boldsymbol{x}_{1}	$\boldsymbol{f}\left(\boldsymbol{x}_{1}\right)$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{2}\right)$	\boldsymbol{x}_{3}	$\boldsymbol{f}\left(\boldsymbol{x}_{3}\right)$	$\boldsymbol{\varepsilon}_{\boldsymbol{a}}$
1	0.00000	0.00000	1.00000	8.50000	2.0000	-104	0.57025	6.57991	
2	0.57025	6.57991	1.00000	8.50000	2.0000	-104	0.81243	8.44652	29.81%
3	0.81243	8.44652	1.00000	8.50000	2.0000	-104	0.90772	8.69575	10.50%

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Thus, after 3 iterations, the result is converging on the true value of $f(x)=8.69793$ at $x=$ 0.91692 .
13.5 The first and second derivatives of the function can be evaluated as

$$
\begin{aligned}
& f^{\prime}(x)=-9 x^{5}-8 x^{3}+12 \\
& f^{\prime \prime}(x)=-45 x^{4}-24 x^{2}
\end{aligned}
$$

which can be substituted into Eq. (13.8) to give

$$
x_{i+1}=x_{i}-\frac{-9 x_{i}^{5}-8 x_{i}^{3}+12}{-45 x_{i}^{4}-24 x_{i}^{2}}
$$

Substituting the initial guess yields

$$
x_{i+1}=2-\frac{-9\left(2^{5}\right)-8\left(2^{3}\right)+12}{-45\left(2^{4}\right)-24\left(2^{2}\right)}=2-\frac{-340}{-816}=1.583333
$$

which has a function value of -17.2029 . The second iteration gives

$$
x_{i+1}=1.583333-\frac{-9\left(1.583333^{5}\right)-8\left(1.583333^{3}\right)+12}{-45\left(1.583333^{4}\right)-24\left(1.583333^{2}\right)}=1.583333-\frac{-109.313}{-342.981}=1.26462
$$

which has a function value of 3.924617 . At this point, an approximate error can be computed as
$\varepsilon_{a}=\left|\frac{1.26462-1.583333}{1.26462}\right| \times 100 \%=26.316 \%$
The process can be repeated, with the results tabulated below:

\boldsymbol{i}	\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{f}^{\prime}(\boldsymbol{x})$	$\boldsymbol{\varepsilon}_{\boldsymbol{a}}$
0	2	-104	-340	-816	
1	1.583333	-17.2029	-109.313	-342.981	26.316%
2	1.26462	3.924617	-33.2898	-153.476	25.202%
3	1.047716	8.178616	-8.56281	-80.5683	20.703%

Thus, within five iterations, the result is converging on the true value of $f(x)=8.69793$ at $x=$ 0.91692 .
13.6 Golden section search is inefficient, but always converges if x_{l} and x_{u} bracket the maximum or minimum of a unimodal function.

Quadratic interpolation can be programmed as either a bracketing or as an open method. For the former, convergence is guaranteed if the initial guesses bracket the maximum or minimum of a unimodal function. However, as mentioned at the top of p. 351, it may

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
sometimes converge slowly. If it is programmed as an open method, it may converge rapidly for well-behaved functions and good initial values. Otherwise, it may diverge. It also has the disadvantage that three initial guesses are required.

Newton's method may converge rapidly for well-behaved functions and good initial values. Otherwise, it may diverge. It also has the disadvantage that both the first and second derivatives must be determined.
13.7 (a) First, the golden ratio can be used to create the interior points,

$$
\begin{aligned}
& d=\frac{\sqrt{5}-1}{2}(4-(-2))=3.7082 \\
& x_{1}=-2+3.7082=1.7082 \\
& x_{2}=4-3.7082=0.2918
\end{aligned}
$$

The function can be evaluated at the interior points

$$
\begin{aligned}
& f\left(x_{2}\right)=f(0.2918)=1.04156 \\
& f\left(x_{1}\right)=f(1.7082)=5.00750
\end{aligned}
$$

Because $f\left(x_{1}\right)>f\left(x_{2}\right)$, the maximum is in the interval defined by x_{2}, x_{1} and x_{u} where x_{1} is the optimum. The error at this point can be computed as

$$
\varepsilon_{a}=(1-0.61803)\left|\frac{4-(-2)}{1.7082}\right| \times 100 \%=134.16 \%
$$

The process can be repeated and all the iterations summarized as

\boldsymbol{i}	$\boldsymbol{x}_{\boldsymbol{l}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{f}\left(\boldsymbol{X}_{\mathbf{2}}\right)$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\mathbf{1}}\right)$	$\boldsymbol{x}_{\boldsymbol{u}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{u}}\right)$	\boldsymbol{d}	$\boldsymbol{X}_{\text {opt }}$	$\boldsymbol{\boldsymbol { \varepsilon } _ { \boldsymbol { a } }}$
1	-2.0000	-29.6000	0.2918	1.0416	1.7082	5.0075	4.0000	-12.8000	3.7082	1.7082	134.16%
2	0.2918	1.0416	1.7082	5.0075	2.5836	5.6474	4.0000	-12.8000	2.2918	2.5836	54.82%
3	1.7082	5.0075	2.5836	5.6474	3.1246	2.9361	4.0000	-12.8000	1.4164	2.5836	33.88%
4	1.7082	5.0075	2.2492	5.8672	2.5836	5.6474	3.1246	2.9361	0.8754	2.2492	24.05%
5	1.7082	5.0075	2.0426	5.6648	2.2492	5.8672	2.5836	5.6474	0.5410	2.2492	14.87%
6	2.0426	5.6648	2.2492	5.8672	2.3769	5.8770	2.5836	5.6474	0.3344	2.3769	8.69%
7	2.2492	5.8672	2.3769	5.8770	2.4559	5.8287	2.5836	5.6474	0.2067	2.3769	5.37%
8	2.2492	5.8672	2.3282	5.8853	2.3769	5.8770	2.4559	5.8287	0.1277	2.3282	3.39%
9	2.2492	5.8672	2.2980	5.8828	2.3282	5.8853	2.3769	5.8770	0.0789	2.3282	2.10%
10	2.2980	5.8828	2.3282	5.8853	2.3468	5.8840	2.3769	5.8770	0.0488	2.3282	1.30%
11	2.2980	5.8828	2.3166	5.8850	2.3282	5.8853	2.3468	5.8840	0.0301	2.3282	0.80%

(b) First, the function values at the initial values can be evaluated

$$
\begin{aligned}
& f\left(x_{0}\right)=f(1.75)=5.1051 \\
& f\left(x_{1}\right)=f(2)=5.6 \\
& f\left(x_{2}\right)=f(2.5)=5.7813
\end{aligned}
$$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
and substituted into Eq. (13.7) to give,

$$
x_{3}=\frac{5.1051\left(2^{2}-2.5^{2}\right)+5.6\left(2.5^{2}-1.75^{2}\right)+5.7813\left(1.75^{2}-2^{2}\right)}{2(5.1051)(2-2.5)+2(5.6)(2.5-1.75)+2(5.7813)(1.75-2)}=2.3341
$$

which has a function value of $f(2.3341)=5.8852$. Because the function value for the new point is higher than for the intermediate point $\left(x_{1}\right)$ and the new x value is to the right of the intermediate point, the lower guess $\left(x_{0}\right)$ is discarded. Therefore, for the next iteration,

$$
\begin{aligned}
& f\left(x_{0}\right)=f(2)=5.6 \\
& f\left(x_{1}\right)=f(2.3341)=5.8852 \\
& f\left(x_{2}\right)=f(2.5)=5.7813
\end{aligned}
$$

which can be substituted into Eq. (13.7) to give $x_{3}=2.3112$, which has a function value of $f(2.3112)=5.8846$. At this point, an approximate error can be computed as

$$
\varepsilon_{a}=\left|\frac{2.3112-2.3341}{2.3112}\right| \times 100 \%=0.99 \%
$$

The process can be repeated, with the results tabulated below:

\boldsymbol{i}	$\boldsymbol{x}_{\mathbf{0}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\mathbf{0}}\right)$	\boldsymbol{x}_{1}	$\boldsymbol{f}\left(\boldsymbol{x}_{1}\right)$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{2}\right)$	\boldsymbol{x}_{3}	$\boldsymbol{f}\left(\boldsymbol{X}_{3}\right)$	$\boldsymbol{\varepsilon}_{\mathrm{a}}$
1	1.7500	5.1051	2.0000	5.6000	2.5000	5.7813	2.3341	5.8852	
2	2.0000	5.6000	2.3341	5.8852	2.5000	5.7813	2.3112	5.8846	0.99%
3	2.3112	5.8846	2.3341	5.8852	2.5000	5.7813	2.3260	5.8853	0.64%
4	2.3112	5.8846	2.3260	5.8853	2.3341	5.8852	2.3263	5.8853	0.01%

Thus, after 4 iterations, the result is converging rapidly on the true value of $f(x)=5.8853$ at x $=2.3263$.
(c) The first and second derivatives of the function can be evaluated as

$$
\begin{aligned}
& f^{\prime}(x)=4-3.6 x+3.6 x^{2}-1.2 x^{3} \\
& f^{\prime \prime}(x)=-3.6+7.2 x-3.6 x^{2}
\end{aligned}
$$

which can be substituted into Eq. (13.8) to give

$$
x_{i+1}=x_{i}-\frac{4-3.6 x_{i}+3.6 x_{i}^{2}-1.2 x_{i}^{3}}{-3.6+7.2 x_{i}-3.6 x_{i}^{2}}=3-\frac{-6.8}{-14.4}=2.5278
$$

which has a function value of 5.7434 . The second iteration gives 2.3517 , which has a function value of 5.8833 . At this point, an approximate error can be computed as $\varepsilon_{a}=18.681 \%$. The process can be repeated, with the results tabulated below:

\boldsymbol{i}	\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{f}^{\prime}(\boldsymbol{x})$	$\boldsymbol{\varepsilon}_{\mathbf{a}}$
0	3.0000	3.9000	-6.8000	-14.4000	
1	2.5278	5.7434	-1.4792	-8.4028	18.681%
2	2.3517	5.8833	-0.1639	-6.5779	7.485%
3	2.3268	5.8853	-0.0030	-6.3377	1.071%
4	2.3264	5.8853	0.0000	-6.3332	0.020%

Thus, within four iterations, the result is converging on the true value of $f(x)=5.8853$ at $x=$ 2.3264 .
13.8 The function can be differentiated twice to give

$$
\begin{aligned}
& f^{\prime}(x)=-4 x^{3}-6 x^{2}-16 x-5 \\
& f^{\prime \prime}(x)=-12 x^{2}-12 x-16
\end{aligned}
$$

which is negative for $-2 \leq x \leq 1$. This suggests that an optimum in the interval would be a maximum. A graph of the original function shows a maximum at about $x=-0.35$.

13.9 (a) First, the golden ratio can be used to create the interior points,
$d=\frac{\sqrt{5}-1}{2}(1-(-2))=1.8541$
$x_{1}=-2+1.8541=-0.1459$
$x_{2}=1-1.8541=-0.8541$
The function can be evaluated at the interior points
$f\left(x_{2}\right)=f(-0.8541)=-0.8514$
$f\left(x_{1}\right)=f(-0.1459)=0.5650$
Because $f\left(x_{1}\right)>f\left(x_{2}\right)$, the maximum is in the interval defined by x_{2}, x_{1} and x_{u} where x_{1} is the optimum. The error at this point can be computed as
$\varepsilon_{a}=(1-0.61803)\left|\frac{1-(-2)}{-0.1459}\right| \times 100 \%=785.41 \%$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

The process can be repeated and all the iterations summarized as

i	x_{1}	$f\left(x_{1}\right)$	\boldsymbol{X}_{2}	$f\left(x_{2}\right)$	X_{1}	$f\left(x_{1}\right)$	\boldsymbol{x}_{u}	$f\left(x_{u}\right)$	d	$\chi_{\text {opt }}$	ε_{a}
1	-2	-22	-0.8541	-0.851	-0.1459	0.565	1	-16.000	1.8541	-0.1459	785.41\%
2	-0.8541	-0.851	-0.1459	0.565	0.2918	-2.197	1	-16.000	1.1459	-0.1459	485.41\%
3	-0.8541	-0.851	-0.4164	0.809	-0.1459	0.565	0.2918	-2.197	0.7082	-0.4164	105.11\%
4	-0.8541	-0.851	-0.5836	0.475	-0.4164	0.809	-0.1459	0.565	0.4377	-0.4164	64.96\%
5	-0.5836	0.475	-0.4164	0.809	-0.3131	0.833	-0.1459	0.565	0.2705	-0.3131	53.40\%
6	-0.4164	0.809	-0.3131	0.833	-0.2492	0.776	-0.1459	0.565	0.1672	-0.3131	33.00\%
7	-0.4164	0.809	-0.3525	0.841	-0.3131	0.833	-0.2492	0.776	0.1033	-0.3525	18.11\%
8	-0.4164	0.809	-0.3769	0.835	-0.3525	0.841	-0.3131	0.833	0.0639	-0.3525	11.19\%
9	-0.3769	0.835	-0.3525	0.841	-0.3375	0.840	-0.3131	0.833	0.0395	-0.3525	6.92\%
10	-0.3769	0.835	-0.3619	0.839	-0.3525	0.841	-0.3375	0.840	0.0244	-0.3525	4.28\%
11	-0.3619	0.839	-0.3525	0.841	-0.3468	0.841	-0.3375	0.840	0.0151	-0.3468	2.69\%
12	-0.3525	0.841	-0.3468	0.841	-0.3432	0.841	-0.3375	0.840	0.0093	-0.3468	1.66\%
13	-0.3525	0.841	-0.3490	0.841	-0.3468	0.841	-0.3432	0.841	0.0058	-0.3468	1.03\%
14	-0.3490	0.841	-0.3468	0.841	-0.3454	0.841	-0.3432	0.841	0.0036	-0.3468	0.63\%

(b) First, the function values at the initial values can be evaluated
$f\left(x_{0}\right)=f(-2)=-22$
$f\left(x_{1}\right)=f(-1)=-2$
$f\left(x_{2}\right)=f(1)=-16$
and substituted into Eq. (13.7) to give,

$$
x_{3}=\frac{-22\left((-1)^{2}-1^{2}\right)+(-2)\left(1^{2}-(-2)^{2}\right)+(-16)\left((-2)^{2}-(-1)^{2}\right)}{2(-22)(-1-1)+2(-2)(1-(-2))+2(-16)(-2-(-1))}=-0.38889
$$

which has a function value of $f(-0.38889)=0.829323$. Because the function value for the new point is higher than for the intermediate point $\left(x_{1}\right)$ and the new x value is to the right of the intermediate point, the lower guess $\left(x_{0}\right)$ is discarded. Therefore, for the next iteration,
$f\left(x_{0}\right)=f(-1)=-2$
$f\left(x_{1}\right)=f(-0.38889)=0.829323$
$f\left(x_{2}\right)=f(1)=-16$
which can be substituted into Eq. (13.7) to give $x_{3}=-0.41799$, which has a function value of $f(-0.41799)=0.80776$. At this point, an approximate error can be computed as

$$
\varepsilon_{a}=\left|\frac{-0.41799-(-0.38889)}{-0.41799}\right| \times 100 \%=6.96 \%
$$

The process can be repeated, with the results tabulated below:

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

\boldsymbol{i}	$\boldsymbol{x}_{\mathbf{0}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\mathbf{0}}\right)$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\mathbf{1}}\right)$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\mathbf{2}}\right)$	$\boldsymbol{x}_{\mathbf{3}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{3}\right)$	$\boldsymbol{\varepsilon}_{\mathrm{a}}$
1	-2	-22	-1.0000	-2	1.0000	-16	-0.3889	0.8293	
2	-1.0000	-2	-0.3889	0.8293	1.0000	-16	-0.4180	0.8078	6.96%
3	-0.4180	0.8078	-0.3889	0.8293	1.0000	-16	-0.3626	0.8392	15.28%
4	-0.3889	0.8293	-0.3626	0.8392	1.0000	-16	-0.3552	0.8404	2.08%

After 4 iterations, the result is converging on the true value of $f(x)=0.8408$ at $x=-0.34725$.
(c) The first and second derivatives of the function can be evaluated as

$$
\begin{aligned}
& f^{\prime}(x)=-4 x^{3}-6 x^{2}-16 x-5 \\
& f^{\prime \prime}(x)=-12 x^{2}-12 x-16
\end{aligned}
$$

which can be substituted into Eq. (13.8) to give

$$
x_{i+1}=x_{i}-\frac{-4 x_{i}^{3}-6 x_{i}^{2}-16 x_{i}-5}{-12 x_{i}^{2}-12 x_{i}-16}=-1-\frac{9}{-16}=-0.4375
$$

which has a function value of 0.787094 . The second iteration gives -0.34656 , which has a function value of 0.840791 . At this point, an approximate error can be computed as $\varepsilon_{a}=$ 128.571%. The process can be repeated, with the results tabulated below:

\boldsymbol{i}	\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{f}^{\prime}(\boldsymbol{x})$	$\boldsymbol{\varepsilon}_{\boldsymbol{a}}$
0	-1	-2	9	-16	
1	-0.4375	0.787094	1.186523	-13.0469	128.571%
2	-0.34656	0.840791	-0.00921	-13.2825	26.242%
3	-0.34725	0.840794	$-8.8 \mathrm{E}-07$	-13.28	0.200%

Thus, within three iterations, the result is converging on the true value of $f(x)=0.840794$ at x $=-0.34725$.
13.10 First, the function values at the initial values can be evaluated
$f\left(x_{0}\right)=f(0.1)=30.2$
$f\left(x_{1}\right)=f(0.5)=7$
$f\left(x_{2}\right)=f(5)=10.6$
and substituted into Eq. (13.7) to give,
$x_{3}=\frac{30.2\left(0.5^{2}-5^{2}\right)+7\left(5^{2}-0.1^{2}\right)+10.6\left(0.1^{2}-0.5^{2}\right)}{2(30.2)(0.5-5)+2(7)(5-0.1)+2(10.6)(0.1-0.5)}=2.7167$
which has a function value of $f(2.7167)=6.5376$. Because the function value for the new point is lower than for the intermediate point $\left(x_{1}\right)$ and the new x value is to the right of the intermediate point, the lower guess (x_{0}) is discarded. Therefore, for the next iteration,

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

```
\(f\left(x_{0}\right)=f(0.5)=7\)
\(f\left(x_{1}\right)=f(2.7167)=6.5376\)
\(f\left(x_{2}\right)=f(5)=10.6\)
```

which can be substituted into Eq. (13.7) to give $x_{3}=1.8444$, which has a function value of $f(1.8444)=5.3154$. At this point, an approximate error can be computed as

$$
\varepsilon_{a}=\left|\frac{1.8444-2.7167}{1.8444}\right| \times 100 \%=47.29 \%
$$

The process can be repeated, with the results tabulated below:

\boldsymbol{i}	$\boldsymbol{x}_{\mathbf{0}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\mathbf{0}}\right)$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\mathbf{1}}\right)$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\mathbf{2}}\right)$	\boldsymbol{x}_{3}	$\boldsymbol{f}\left(\boldsymbol{x}_{3}\right)$	$\boldsymbol{\varepsilon}_{\boldsymbol{a}}$
1	0.1	30.2	0.5000	7.0000	5.0000	10.6000	2.7167	6.5376	
2	0.5000	7	2.7167	6.5376	5.0000	10.6000	1.8444	5.3154	47.29%
3	0.5000	7	1.8444	5.3154	2.7167	6.5376	1.6954	5.1603	8.79%
4	0.5000	7	1.6954	5.1603	1.8444	5.3154	1.4987	4.9992	13.12%
5	0.5000	7	1.4987	4.9992	1.6954	5.1603	1.4236	4.9545	5.28%
6	0.5000	7	1.4236	4.9545	1.4987	4.9992	1.3556	4.9242	5.02%
7	0.5000	7	1.3556	4.9242	1.4236	4.9545	1.3179	4.9122	2.85%
8	0.5000	7	1.3179	4.9122	1.3556	4.9242	1.2890	4.9054	2.25%
9	0.5000	7	1.2890	4.9054	1.3179	4.9122	1.2703	4.9023	1.47%
10	0.5000	7	1.2703	4.9023	1.2890	4.9054	1.2568	4.9006	1.08%

Thus, after 10 iterations, the result is converging very slowly on the true value of $f(x)=$ 4.8990 at $x=1.2247$.
13.11 Differentiating the function and setting the result equal to zero results in the following roots problem to locate the minimum

$$
f^{\prime}(x)=6+10 x+9 x^{2}+16 x^{3}
$$

Bisection can be employed to determine the root. Here are the first few iterations:

iteration	$\boldsymbol{X}_{\boldsymbol{l}}$	$\boldsymbol{X}_{\boldsymbol{u}}$	$\boldsymbol{x}_{\boldsymbol{r}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{l}}\right)$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{r}}\right)$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}\right) \times \boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{r}}\right)$	$\boldsymbol{\varepsilon}_{\mathbf{a}}$
1	-2.0000	1.0000	-0.5000	-106.000	1.2500	-132.500	300.00%
2	-2.0000	-0.5000	-1.2500	-106.000	-23.6875	2510.875	60.00%
3	-1.2500	-0.5000	-0.8750	-23.6875	-6.5781	155.819	42.86%
4	-0.8750	-0.5000	-0.6875	-6.5781	-1.8203	11.974	27.27%
5	-0.6875	-0.5000	-0.5938	-1.8203	-0.1138	0.207	15.79%
6	-0.5938	-0.5000	-0.5469	-0.1138	0.6060	-0.0689	8.57%
7	-0.5938	-0.5469	-0.5703	-0.1138	0.2562	-0.0291	4.11%
8	-0.5938	-0.5703	-0.5820	-0.1138	0.0738	-0.0084	2.01%
9	-0.5938	-0.5820	-0.5879	-0.1138	-0.0193	0.0022	1.00%
10	-0.5879	-0.5820	-0.5850	-0.0193	0.0274	-0.0005	0.50%

The approach can be continued to yield a result of $x=-0.5867$.

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
13.12 (a) The first and second derivatives of the function can be evaluated as

$$
\begin{aligned}
& f^{\prime}(x)=6+10 x+9 x^{2}+16 x^{3} \\
& f^{\prime \prime}(x)=10+18 x+48 x^{2}
\end{aligned}
$$

which can be substituted into Eq. (13.8) to give

$$
x_{i+1}=x_{i}-\frac{6+10 x_{i}+9 x_{i}^{2}+16 x_{i}^{3}}{10+18 x_{i}+48 x_{i}^{2}}=-1-\frac{-11}{40}=-0.725
$$

which has a function value of 1.24 . The second iteration gives -0.60703 , which has a function value of 1.07233 . At this point, an approximate error can be computed as $\varepsilon_{a}=37.931 \%$. The process can be repeated, with the results tabulated below:

\boldsymbol{i}	\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{f}^{\prime}(\boldsymbol{x})$	$\boldsymbol{\varepsilon}_{\mathbf{a}}$
0	-1	3	-11	40	
1	-0.725	1.24002	-2.61663	22.180	37.931%
2	-0.60703	1.07233	-0.33280	16.76067	19.434%
3	-0.58717	1.06897	-0.00781	15.97990	3.382%
4	-0.58668	1.06897	$-4.6 \mathrm{E}-06$	15.96115	0.083%

Thus, within four iterations, the stopping criterion is met and the result is converging on the true value of $f(x)=1.06897$ at $x=-0.58668$.
(b) The finite difference approximations of the derivatives can be computed as

$$
\begin{aligned}
& f^{\prime}(x)=\frac{3.1120-2.8920}{-0.01}=-11.001 \\
& f^{\prime \prime}(x)=\frac{3.1120-2(3)+2.8920}{(-0.01)^{2}}=40.001
\end{aligned}
$$

which can be substituted into Eq. (13.8) to give

$$
x_{i+1}=x_{i}-\frac{6+10 x_{i}+9 x_{i}^{2}+16 x_{i}^{3}}{10+18 x_{i}+48 x_{i}^{2}}=-1-\frac{-11.001}{40.001}=-0.725
$$

which has a function value of 1.2399 . The second iteration gives -0.6070 , which has a function value of 1.0723 . At this point, an approximate error can be computed as $\varepsilon_{a}=$ 37.936%. The process can be repeated, with the results tabulated below:

\boldsymbol{i}	$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$	$\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}}\right)$	$\boldsymbol{x}_{\boldsymbol{i}}+\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}+\boldsymbol{\delta} \boldsymbol{x}_{\boldsymbol{i}}\right)$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$	\boldsymbol{f} ' $\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$
$\mathbf{0}$	-1	3	-0.01	-0.99	2.8920	-1.0100	3.1120	-11.001	40.001
1	-0.7250	1.2399	-0.00725	-0.7177	1.2216	-0.7322	1.2595	-2.616	22.179
2	-0.6070	1.0723	-0.00607	-0.6009	1.0706	-0.6131	1.0746	-0.333	16.760

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

3	-0.5872	1.0690	-0.00587	-0.5813	1.0692	-0.5930	1.0693	-0.008	15.980
4	-0.5867	1.0690	-0.00587	-0.5808	1.0692	-0.5925	1.0692	$-4.1 \mathrm{E}-06$	15.961

Thus, within four iterations, the stopping criterion is met and the result is converging on the true value of $f(x)=1.06897$ at $x=-0.58668$.
13.13 Because of multiple local minima and maxima, there is no really simple means to test whether a single maximum occurs within an interval without actually performing a search. However, if we assume that the function has one maximum and no minima within the interval, a check can be included. Here is a VBA program to implement the Golden section search algorithm for maximization and solve Example 13.1.

```
Option Explicit
Sub GoldMax()
Dim ier As Integer
Dim xlow As Double, xhigh As Double
Dim xopt As Double, fopt As Double
xlow = 0
xhigh = 4
Call GoldMx(xlow, xhigh, xopt, fopt, ier)
If ier = 0 Then
    MsgBox "xopt = " & xopt
    MsgBox "f(xopt) = " & fopt
Else
    MsgBox "Does not appear to be maximum in [xl, xu]"
End If
End Sub
Sub GoldMx(xlow, xhigh, xopt, fopt, ier)
Dim iter As Integer, maxit As Integer, ea As Double, es As Double
Dim xL As Double, xU As Double, d As Double, x1 As Double
Dim x2 As Double, f1 As Double, f2 As Double
Const R As Double = (5 ^ 0.5 - 1) / 2
ier = 0
maxit = 50
es = 0.001
xL = xlow
xU = xhigh
iter = 1
d = R * (xU - xL)
x1 = xL + d
x2 = xU - d
f1 = f(x1)
f2 = f(x2)
If f1 > f2 Then
    xopt = x1
    fopt = f1
Else
    xopt = x2
    fopt = f2
End If
If fopt > f(xL) And fopt > f(xU) Then
    Do
        d = R * d
        If f1 > f2 Then
            xL = x2
            x2 = x1
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

```
            x1 = xL + d
            f2 = f1
            f1 = f(x1)
    Else
            xU = x1
            x1 = x2
            x2 = xU - d
            f1 = f2
            f2 = f(x2)
    End If
    iter = iter + 1
    If f1 > f2 Then
            xopt = x1
            fopt = f1
    Else
            xopt = x2
            fopt = f2
    End If
    If xopt <> O Then ea = (1 - R) * Abs((xU - xL) / xopt) * 100
    If ea <= es Or iter >= maxit Then Exit Do
    Loop
Else
    ier = 1
End If
End Sub
Function f(x)
f = 2 * Sin(x) - x ^ 2 / 10
End Function
```

13.14 The easiest way to set up a maximization algorithm so that it can do minimization is to realize that minimizing a function is the same as maximizing its negative. Therefore, the following algorithm written in VBA minimizes or maximizes depending on the value of a user input variable, ind, where ind $=-1$ and 1 correspond to minimization and maximization, respectively. It is set up to solve the minimization described in Prob. 13.10.

```
Option Explicit
Sub GoldMinMax()
Dim ind As Integer 'Minimization (ind = -1); Maximization (ind = 1)
Dim xlow As Double, xhigh As Double
Dim xopt As Double, fopt As Double
xlow = 0.1
xhigh = 5
Call GoldMnMx(xlow, xhigh, -1, xopt, fopt)
MsgBox "xopt = " & xopt
MsgBox "f(xopt) = " & fopt
End Sub
Sub GoldMnMx(xlow, xhigh, ind, xopt, fopt)
Dim iter As Integer, maxit As Integer, ea As Double, es As Double
Dim xL As Double, xU As Double, d As Double, x1 As Double
Dim x2 As Double, f1 As Double, f2 As Double
Const R As Double = (5^0.5 - 1) / 2
maxit = 50
es = 0.001
xL = xlow
xU = xhigh
iter = 1
d = R * (xU - xL)
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

```
x1 = xL + d
x2 = xU - d
f1 = f(ind, x1)
f2 = f(ind, x2)
If f1 > f2 Then
    xopt = x1
    fopt = f1
Else
    xopt = x2
    fopt = f2
End If
Do
    d = R * d
    If f1 > f2 Then
            xL = x2
            x2 = x1
            x1 = xL + d
            f2 = f1
            f1 = f(ind, x1)
    Else
            xU = x1
            x1 = x2
            x2 = xU - d
            f1 = f2
            f2 = f(ind, x2)
    End If
    iter = iter + 1
    If f1 > f2 Then
            xopt = x1
            fopt = f1
    Else
            xopt = x2
            fopt = f2
    End If
    If xopt <> 0 Then ea = (1 - R) * Abs((xU - xL) / xopt) * 100
    If ea <= es Or iter >= maxit Then Exit Do
Loop
fopt = ind * fopt
End Sub
Function f(ind, x)
f = 2 * x + 3 / x 'place function to be evaluated here
f = ind * f
End Function
```

13.15 Because of multiple local minima and maxima, there is no really simple means to test whether a single maximum occurs within an interval without actually performing a search. However, if we assume that the function has one maximum and no minima within the interval, a check can be included. Here is a VBA program to implement the Quadratic Interpolation algorithm for maximization and solve Example 13.2.

```
Option Explicit
Sub QuadMax()
Dim ier As Integer
Dim xlow As Double, xhigh As Double
Dim xopt As Double, fopt As Double
xlow = 0
xhigh = 4
Call QuadMx(xlow, xhigh, xopt, fopt, ier)
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

```
If ier = 0 Then
    MsgBox "xopt = " & xopt
    MsgBox "f(xopt) = " & fopt
Else
    MsgBox "Does not appear to be maximum in [xl, xu]"
End If
End Sub
Sub QuadMx(xlow, xhigh, xopt, fopt, ier)
Dim iter As Integer, maxit As Integer, ea As Double, es As Double
Dim x0 As Double, x1 As Double, x2 As Double
Dim f0 As Double, f1 As Double, f2 As Double
Dim xoptOld As Double
ier = 0
maxit = 50
es = 0.0001
x0 = xlow
x2 = xhigh
x1 = (x0 + x2) / 2
f0 = f (x0)
f1 = f(x1)
f2 = f(x2)
If f1 > f0 Or f1 > f2 Then
    xoptOld = xl
    Do
        xopt = f0 * (x1 ^ 2 - x2 ^ 2) + f1 * (x2 ^ 2 - x0^ 2) + f2 * (x0 ^ 2 - x1 ^ 2)
        xopt = xopt / (2 * f0 * (x1 - x2) + 2 * f1 * (x2 - x0) + 2 * f2 * (x0 - x1))
        fopt = f(xopt)
        iter = iter + 1
        If xopt > x1 Then
            x0 = x1
            f0 = f1
            x1 = xopt
            f1 = fopt
        Else
            x2 = x1
            f2 = f1
            x1 = xopt
            f1 = fopt
        End If
        If xopt <> 0 Then ea = Abs((xopt - xoptOld) / xopt) * 100
        xoptOld = xopt
        If ea <= es Or iter >= maxit Then Exit Do
        Loop
Else
        ier = 1
End If
End Sub
Function f(x)
f = 2 * Sin(x) - x ^ 2 / 10
End Function
```

13.16 Here is a VBA program to implement the Newton-Raphson method for maximization. It is set up to duplicate the computation from Example 13.3.

```
Option Explicit
Sub NRMax()
Dim xguess As Double
Dim xopt As Double, fopt As Double
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

```
xguess = 2.5
Call NRMx(xguess, xopt, fopt)
MsgBox "xopt = " & xopt
MsgBox "f(xopt) = " & fopt
End Sub
Sub NRMx(xguess, xopt, fopt)
Dim iter As Integer, maxit As Integer, ea As Double, es As Double
Dim x0 As Double, x1 As Double, x2 As Double
Dim f0 As Double, f1 As Double, f2 As Double
Dim xoptOld As Double
maxit = 50
es = 0.01
Do
    xopt = xguess - df(xguess) / d2f(xguess)
    fopt = f(xopt)
    If xopt <> 0 Then ea = Abs((xopt - xguess) / xopt) * 100
    xguess = xopt
    If ea <= es Or iter >= maxit Then Exit Do
Loop
End Sub
Function f(x)
f = 2 * Sin(x) - x ^ 2 / 10
End Function
Function df(x)
df = 2 * Cos(x) - x / 5
End Function
Function d2f(x)
d2f = -2 * Sin(x) - 1 / 5
End Function
```

13.17 The first iteration of the golden-section search can be implemented as
$d=\frac{\sqrt{5}-1}{2}(4-2)=1.2361$
$x_{1}=2+1.2361=3.2361$
$x_{2}=4-1.2361=2.7639$
$f\left(x_{2}\right)=f(2.7639)=-6.1303$
$f\left(x_{1}\right)=f(3.2361)=-5.8317$
Because $f\left(x_{2}\right)<f\left(x_{1}\right)$, the minimum is in the interval defined by x_{1}, x_{2}, and x_{1} where x_{2} is the optimum. The error at this point can be computed as
$\varepsilon_{a}=(1-0.61803)\left|\frac{4-2}{2.7639}\right| \times 100 \%=27.64 \%$
The process can be repeated and all the iterations summarized as

\boldsymbol{i}	$\boldsymbol{x}_{\boldsymbol{l}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{l}}\right)$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\mathbf{2}}\right)$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\mathbf{1}}\right)$	$\boldsymbol{x}_{\boldsymbol{u}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{u}}\right)$	\boldsymbol{d}	$\boldsymbol{x}_{\text {opt }}$	$\boldsymbol{\varepsilon}_{\boldsymbol{a}}$
1	2	-3.8608	2.7639	-6.1303	3.2361	-5.8317	4	-2.7867	1.2361	2.7639	27.64%
2	2	-3.8608	2.4721	-5.6358	2.7639	-6.1303	3.2361	-5.8317	0.7639	2.7639	17.08%

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

3	2.4721	-5.6358	2.7639	-6.1303	2.9443	-6.1776	3.2361	-5.8317	0.4721	2.9443	9.91%
4	2.7639	-6.1303	2.9443	-6.1776	3.0557	-6.1065	3.2361	-5.8317	0.2918	2.9443	6.13%

After four iterations, the process is converging on the true minimum at $x=2.8966$ where the function has a value of $f(x)=-6.1847$.
13.18 The first iteration of the golden-section search can be implemented as
$d=\frac{\sqrt{5}-1}{2}(60-0)=37.0820$
$x_{1}=0+37.0820=37.0820$
$x_{2}=60-37.0820=22.9180$
$f\left(x_{2}\right)=f(22.9180)=18.336$
$f\left(x_{1}\right)=f(37.0820)=19.074$
Because $f\left(x_{1}\right)>f\left(x_{2}\right)$, the maximum is in the interval defined by x_{2}, x_{1}, and x_{u} where x_{1} is the optimum. The error at this point can be computed as
$\varepsilon_{a}=(1-0.61803)\left|\frac{60-0}{37.0820}\right| \times 100 \%=61.80 \%$
The process can be repeated and all the iterations summarized as

i	\boldsymbol{X}_{1}	$f\left(x_{1}\right)$	X_{2}	$f\left(X_{2}\right)$	X_{1}	$f\left(x_{1}\right)$	\boldsymbol{X}_{u}	$f\left(x_{u}\right)$	d	$\chi_{\text {opt }}$	ε_{a}
1	0	1	22.9180	18.336	37.0820	19.074	60	4.126	37.0820	37.0820	61.80\%
2	22.9180	18.336	37.0820	19.074	45.8359	15.719	60	4.126	22.9180	37.0820	38.20\%
3	22.9180	18.336	31.6718	19.692	37.0820	19.074	45.8359	15.719	14.1641	31.6718	27.64\%
4	22.9180	18.336	28.3282	19.518	31.6718	19.692	37.0820	19.074	8.7539	31.6718	17.08\%
5	28.3282	19.518	31.6718	19.692	33.7384	19.587	37.0820	19.074	5.4102	31.6718	10.56\%
6	28.3282	19.518	30.3947	19.675	31.6718	19.692	33.7384	19.587	3.3437	31.6718	6.52\%
7	30.3947	19.675	31.6718	19.692	32.4612	19.671	33.7384	19.587	2.0665	31.6718	4.03\%
8	30.3947	19.675	31.1840	19.693	31.6718	19.692	32.4612	19.671	1.2772	31.1840	2.53\%
9	30.3947	19.675	30.8825	19.689	31.1840	19.693	31.6718	19.692	0.7893	31.1840	1.56\%
10	30.8825	19.689	31.1840	19.693	31.3703	19.693	31.6718	19.692	0.4878	31.3703	0.96\%

After ten iterations, the process falls below the stopping criterion and the result is converging on the true maximum at $x=31.3713$ where the function has a value of $y=19.6934$.
13.19 (a) A graph indicates the minimum at about $x=270$.

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

(b) Golden section search,

$$
\begin{aligned}
& d=\frac{\sqrt{5}-1}{2}(600-0)=370.820 \\
& x_{1}=0+370.820=370.820 \\
& x_{2}=600-370.820=229.180 \\
& f\left(x_{2}\right)=f(229.180)=-0.5016 \\
& f\left(x_{1}\right)=f(370.820)=-0.4249
\end{aligned}
$$

Because $f\left(x_{2}\right)<f\left(x_{1}\right)$, the minimum is in the interval defined by x_{l}, x_{2}, and x_{1} where x_{2} is the optimum. The error at this point can be computed as

$$
\varepsilon_{a}=(1-0.61803)\left|\frac{600-0}{370.820}\right| \times 100 \%=100 \%
$$

The process can be repeated and all the iterations summarized as

\boldsymbol{i}	$\boldsymbol{x}_{\boldsymbol{I}}$	$\boldsymbol{f}(\boldsymbol{x} \boldsymbol{I} \boldsymbol{)}$	$\boldsymbol{x}_{\mathbf{2}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\mathbf{2}}\right)$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\mathbf{1}}\right)$	$\boldsymbol{x}_{\boldsymbol{u}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{u}}\right)$	\boldsymbol{d}	$\boldsymbol{x}_{\text {opt }}$
1	0	0	229.180	-0.5016	370.820	-0.4249	600	0	370.820	229.1796
2	0	0	141.641	-0.3789	229.180	-0.5016	370.820	-0.4249	229.180	229.1796
3	141.641	-0.3789	229.180	-0.5016	283.282	-0.5132	370.820	-0.4249	141.641	283.2816
4	229.180	-0.5016	283.282	-0.5132	316.718	-0.4944	370.820	-0.4249	87.539	283.2816
5	229.180	-0.5016	262.616	-0.5149	283.282	-0.5132	316.718	-0.4944	54.102	262.6165
6	229.180	-0.5016	249.845	-0.5121	262.616	-0.5149	283.282	-0.5132	33.437	262.6165
7	249.845	-0.5121	262.616	-0.5149	270.510	-0.5151	283.282	-0.5132	20.665	270.5098
8	262.616	-0.5149	270.510	-0.5151	275.388	-0.5147	283.282	-0.5132	12.772	270.5098
9	262.616	-0.5149	267.495	-0.5152	270.510	-0.5151	275.388	-0.5147	7.893	267.4948
10	262.616	-0.5149	265.631	-0.5151	267.495	-0.5152	270.510	-0.5151	4.878	267.4948
11	265.631	-0.5151	267.495	-0.5152	268.646	-0.5152	270.510	-0.5151	3.015	268.6465

After eleven iterations, the process falls below the stopping criterion and the result is converging on the true minimum at $x=268.3281$ where the function has a value of $y=-0.51519$.
13.20 The velocity of a falling object with an initial velocity and first-order drag can be computed as

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$$
v=v_{0} e^{-(c / m) t}+\frac{m g}{c}\left(1-e^{-(c / m) t}\right)
$$

The vertical distance traveled can be determined by integration

$$
z=z_{0}+\int_{0}^{t} v_{0} e^{-(c / m) t}+\frac{m g}{c}\left(1-e^{-(c / m) t}\right) d t
$$

where negative z is distance upwards. Assuming that $z_{0}=0$, evaluating the integral yields

$$
z=\frac{m g}{c} t+\frac{m}{c}\left(v_{0}-\frac{m g}{c}\right)\left(1-e^{-(c / m) t}\right)
$$

Therefore the solution to this problem amounts to determining the minimum of this function (since the most negative value of z corresponds to the maximum height). This function can be plotted using the given parameter values. As in the following graph (note that the ordinate values are plotted in reverse), the maximum height occurs after about 3.5 s and appears to be about 75 m .

Here is the result of using the golden-section search to determine the maximum height

i	x_{1}	$f\left(x_{1}\right)$	χ_{2}	$f\left(X_{2}\right)$	X_{1}	$f\left(x_{1}\right)$	\boldsymbol{x}_{u}	$f\left(X_{u}\right)$	d	$\chi_{\text {opt }}$	ε_{a}
1	0	0	1.9098	-66.733	3.0902	-83.278	5	-78.926	3.0902	3.0902	61.80\%
2	1.9098	-66.733	3.0902	-83.278	3.8197	-85.731	5	-78.926	1.9098	3.8197	30.90\%
3	3.0902	-83.278	3.8197	-85.731	4.2705	-84.612	5.0000	-78.926	1.1803	3.8197	19.10\%
4	3.0902	-83.278	3.5410	-85.439	3.8197	-85.731	4.2705	-84.612	0.7295	3.8197	11.80\%
5	3.5410	-85.439	3.8197	-85.731	3.9919	-85.53	4.2705	-84.612	0.450	3.8197	7.29\%
6	3.5410	-85.439	3.7132	-85.711	3.8197	-85.731	3.9919	-85.531	0.2786	3.8197	4.51\%
7	3.7132	-85.71	3.819	-85.731	3.885	-85.688	3.9919	-85.531	0.1722	3.8197	2.79\%
8	3.7132	-85.711	3.7790	-85.737	3.8197	-85.731	3.8854	-85.688	0.1064	3.7790	1.74\%
9	3.7132	-85.711	3.7539	-85.732	3.7790	-85.737	3.8197	-85.731	0.0658	3.7790	1.08\%
10	3.7539	-85.732	3.7790	-85.737	3.7945	-85.736	3.8197	-85.731	0.0407	3.7790	0.66\%

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

After ten iterations, the process falls below a stopping of 1% criterion and the result is converging on the true minimum at $x=3.78588$ where the function has a value of $y=-85.7367$. Thus, the maximum height is 74.811 .
13.21 The inflection point corresponds to the point at which the derivative of the normal distribution is a minimum. The derivative can be evaluated as

$$
\frac{d y}{d x}=-2 x e^{-x^{2}}
$$

Starting with initial guesses of $x_{l}=0$ and $x_{u}=2$, the golden-section search method can be implemented as

$$
\begin{aligned}
& d=\frac{\sqrt{5}-1}{2}(2-0)=1.2361 \\
& x_{1}=0+1.2361=1.2361 \\
& x_{2}=2-1.2361=0.7639 \\
& f\left(x_{2}\right)=f(0.7639)=-2(0.7639) e^{-(0.7639)^{2}}=-0.8524 \\
& f\left(x_{1}\right)=f(1.2361)=-2(1.2361) e^{-(1.2361)^{2}}=-0.5365
\end{aligned}
$$

Because $f\left(x_{2}\right)<f\left(x_{1}\right)$, the minimum is in the interval defined by x_{1}, x_{2}, and x_{1} where x_{2} is the optimum. The error at this point can be computed as
$\varepsilon_{a}=(1-0.61803)\left|\frac{2-0}{0.7639}\right| \times 100 \%=100 \%$
The process can be repeated and all the iterations summarized as

i	${ }_{1}$	$f\left(x_{1}\right)$	χ_{2}	$f\left(X_{2}\right)$	X_{1}	$f\left(x_{1}\right)$	\boldsymbol{X}_{u}	$f\left(X_{u}\right)$	d	$\chi_{\text {opt }}$	ε_{a}
1	0	0.0000	0.7639	-0.8524	1.2361	-0.5365	2	-0.0733	1.236	0.7639	100.00\%
2	0	0.0000	0.4721	-0.7556	0.7639	-0.8524	1.2361	-0.5365	0.7639	0.7639	61.80\%
3	0.4721	-0.7556	0.7639	-0.8524	0.9443	-0.7743	1.2361	-0.5365	0.4721	0.7639	38.20\%
4	0.4721	-0.7556	0.6525	-0.8525	0.7639	-0.8524	0.9443	-0.7743	0.2918	0.6525	27.64\%
5	0.4721	-0.7556	0.5836	-0.8303	0.6525	-0.8525	0.7639	-0.8524	0.1803	0.6525	17.08\%
6	0.5836	-0.8303	0.6525	-0.8525	0.6950	-0.8575	0.7639	-0.8524	0.1115	0.6950	9.91\%
7	0.6525	-0.8525	0.6950	-0.8575	0.7214	-0.8574	0.7639	-0.8524	0.0689	0.6950	6.13\%
8	0.6525	-0.8525	0.6788	-0.8564	0.6950	-0.8575	0.7214	-0.8574	0.0426	0.6950	3.79\%
9	0.6788	-0.8564	0.6950	-0.8575	0.7051	-0.8578	0.7214	-0.8574	0.0263	0.7051	2.31\%
10	0.6950	-0.8575	0.7051	-0.8578	0.7113	-0.8577	0.7214	-0.8574	0.0163	0.7051	1.43\%
11	0.6950	-0.8575	0.7013	-0.8577	0.7051	-0.8578	0.7113	-0.8577	0.0100	0.7051	0.88

After eleven iterations, the process falls below a stopping of 1% criterion and the result is converging on the true minimum at $x=0.707107$ where the function has a value of $y=-0.85776$.

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

