CHAPTER 14

14.1 The elevation can be determined as
$f(0.8,1.2)=2(0.8) 1.2+1.5(1.2)-1.25(0.8)^{2}-2(1.2)^{2}+5=5.04$
The partial derivatives can be evaluated,
$\frac{\partial f}{\partial x}=2 y-2.5 x=2(1.2)-2.5(0.8)=0.4$
$\frac{\partial f}{\partial y}=2 x+1.5-4 y=2(0.8)+1.5-4(1.2)=-1.7$
which can be used to determine the gradient as $\nabla f=0.4 \mathbf{i}-1.7 \mathbf{j}$. This corresponds to the direction $\theta=\tan ^{-1}(-1.7 / 0.4)=-1.3397$ radians $\left(=-76.76^{\circ}\right)$. This vector can be sketched on a topographical map of the function as shown below:

The slope in this direction can be computed as

$$
\sqrt{0.4^{2}+(-1.7)^{2}}=1.746
$$

14.2 The partial derivatives can be evaluated,

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 x=2(2)=4 \\
& \frac{\partial f}{\partial y}=4 y=4(2)=8
\end{aligned}
$$

The angle in the direction of \boldsymbol{h} is

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$$
\theta=\tan ^{-1}\left(\frac{3}{2}\right)=0.9828 \text { radians }\left(=56.31^{\circ}\right)
$$

The directional derivative can be computed as

$$
g^{\prime}(0)=4 \cos (0.9828)+8 \sin (0.9828)=8.875
$$

14.3 (a)
$\nabla f=\left\{\begin{array}{l}3 y^{2}+2 y e^{x y} \\ 6 x y+2 x e^{x y}\end{array}\right\} \quad H=\left[\begin{array}{cc}2 y^{2} e^{x y} & 6 y+2 x y e^{x y}+2 e^{x y} \\ 6 y+2 x y e^{x y}+2 e^{x y} & 6 x+2 x^{2} e^{x y}\end{array}\right]$
(b)
$\nabla f=\left\{\begin{array}{l}4 x \\ 2 y \\ 2 z\end{array}\right\} \quad H=\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$
(c)
$\nabla f=\left\{\begin{array}{c}\frac{2 x+3 y}{x^{2}+3 x y+2 y^{2}} \\ \frac{3 x+4 y}{x^{2}+3 x y+2 y^{2}}\end{array}\right\} \quad H=\frac{\left[\begin{array}{cc}-2 x^{2}-6 x y-5 y^{2} & -3 x^{2}-8 x y-6 y^{2} \\ -3 x^{2}-8 x y-6 y^{2} & -5 x^{2}-12 x y-8 y^{2}\end{array}\right]}{\left(x^{2}+3 x y+2 y^{2}\right)^{2}}$
14.4 The partial derivatives can be evaluated,
$\frac{\partial f}{\partial x}=-3 x+2.25 y$
$\frac{\partial f}{\partial y}=2.25 x-4 y+1.75$
These can be set to zero to generate the following simultaneous equations

$$
\begin{aligned}
& 3 x-2.25 y=0 \\
& -2.25 x+4 y=1.75
\end{aligned}
$$

which can be solved for $x=0.567568$ and $y=0.756757$, which is the optimal solution.
14.5 The partial derivatives can be evaluated at the initial guesses, $x=1$ and $y=1$,

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=-3 x+2.25 y=-3(1)+2.25(1)=-0.75 \\
& \frac{\partial f}{\partial y}=2.25 x-4 y+1.75=2.25(1)-4(1)+1.75=0
\end{aligned}
$$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Therefore, the search direction is $-0.75 \mathbf{i}$.

$$
f(1-0.75 h, 1)=0.5+0.5625 h-0.84375 h^{2}
$$

This can be differentiated and set equal to zero and solved for $h^{*}=0.33333$. Therefore, the result for the first iteration is $x=1-0.75(0.3333)=0.75$ and $y=1+0(0.3333)=1$.

For the second iteration, the partial derivatives can be evaluated as,

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=-3(0.75)+2.25(1)=0 \\
& \frac{\partial f}{\partial y}=2.25(0.75)-4(1)+1.75=-0.5625
\end{aligned}
$$

Therefore, the search direction is $-0.5625 \mathbf{j}$.

$$
f(0.75,1-0.5625 h)=0.59375+0.316406 h-0.63281 h^{2}
$$

This can be differentiated and set equal to zero and solved for $h^{*}=0.25$. Therefore, the result for the second iteration is $x=0.75+0(0.25)=0.75$ and $y=1+(-0.5625) 0.25=0.859375$.

14.6 The partial derivatives can be evaluated at the initial guesses, $x=1$ and $y=1$,

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2(x-3)=2(1-3)=-4 \\
& \frac{\partial f}{\partial y}=2(y-2)=2(1-2)=-2
\end{aligned}
$$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
$f(1-4 h, 1-2 h)=(1-4 h-3)^{2}+(1-2 h-2)^{2}$
$g(h)=(-4 h-2)^{2}+(-2 h-1)^{2}$

Setting $g^{\prime}(h)=0$ gives $h^{*}=-0.5$. Therefore,
$x=1-4(-0.5)=3$
$y=1-2(-0.5)=2$
Thus, for this special case, the approach converges on the correct answer after a single iteration. This occurs because the function is spherical as shown below. Thus, the gradient for any guess points directly at the solution.

14.7 The partial derivatives can be evaluated at the initial guesses, $x=0$ and $y=0$,

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=4+2 x-8 x^{3}+2 y=4+2(0)-8(0)^{3}+2(0)=4 \\
& \frac{\partial f}{\partial y}=2+2 x-6 y=2+2(0)-6(0)=2 \\
& f(0+4 h, 0+2 h)=20 h+20 h^{2}-512 h^{4} \\
& g^{\prime}(h)=20+40 h-2048 h^{3}
\end{aligned}
$$

The root of this equation can be determined by bisection. Using initial guesses of $h=0$ and 1 yields a root of $h^{*}=0.244$ after 13 iterations with $\varepsilon_{a}=0.05 \%$.

iteration	$\boldsymbol{h}_{\boldsymbol{l}}$	\boldsymbol{h}_{u}	\boldsymbol{h}_{r}	$\boldsymbol{g}\left(\boldsymbol{h}_{\boldsymbol{l}}\right)$	$\boldsymbol{g}\left(\boldsymbol{h}_{\boldsymbol{r}}\right)$	$\boldsymbol{g}\left(\boldsymbol{h} \boldsymbol{\boldsymbol { h } _ { \boldsymbol { l } }}\right)^{\boldsymbol{g}} \boldsymbol{g}\left(\boldsymbol{h}_{r}\right)$	$\boldsymbol{\varepsilon}_{\boldsymbol{a}}$
1	0.00000	1.00000	0.50000	20.000	-216.000	-4320.00	100.00%

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

2	0.00000	0.50000	0.25000	20.000	-2.000	-40.00	100.00%
3	0.00000	0.25000	0.12500	20.000	21.000	420.00	100.00%
4	0.12500	0.25000	0.18750	21.000	14.000	294.00	33.33%
5	0.18750	0.25000	0.21875	14.000	7.313	102.38	14.29%
6	0.21875	0.25000	0.23438	7.313	3.008	21.99	6.67%
7	0.23438	0.25000	0.24219	3.008	0.595	1.79	3.23%
8	0.24219	0.25000	0.24609	0.595	-0.680	-0.40	1.59%
9	0.24219	0.24609	0.24414	0.595	-0.037	-0.02	0.80%
10	0.24219	0.24414	0.24316	0.595	0.280	0.17	0.40%
11	0.24316	0.24414	0.24365	0.280	0.122	0.03	0.20%
12	0.24365	0.24414	0.24390	0.122	0.043	0.01	0.10%
13	0.24390	0.24414	0.24402	0.043	0.003	0.00	0.05%

Therefore,

$$
\begin{aligned}
& x=0+4(0.244)=0.976 \\
& y=0+2(0.244)=0.488
\end{aligned}
$$

14.8

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=-8+2 x-2 y \\
& \frac{\partial f}{\partial y}=12+8 y-2 x
\end{aligned}
$$

At $x=y=0$,
$\frac{\partial f}{\partial x}=-8$
$\frac{\partial f}{\partial y}=12$
$f(0-8 h, 0+12 h)=g(h)$
$g(h)=832 h^{2}+208 h$
At $g^{\prime}(h)=0, h^{*}=-0.125$.
Therefore,

$$
\begin{aligned}
& x=0-8(-0.125)=1 \\
& y=0+12(-0.125)=-1.5
\end{aligned}
$$

14.9 The following code implements the random search algorithm in VBA. It is set up to solve Prob. 14.7.

```
Option Explicit
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

```
Sub RandSearch()
Dim n As Long
Dim xmin As Double, xmax As Double, ymin As Double, ymax As Double
Dim maxf As Double, maxx As Double, maxy As Double
xmin = -2: xmax = 2: ymin = -2: ymax = 2
n = InputBox("n=")
Call RndSrch(n, xmin, xmax, ymin, ymax, maxy, maxx, maxf)
MsgBox maxf
MsgBox maxx
MsgBox maxy
End Sub
Sub RndSrch(n, xmin, xmax, ymin, ymax, maxy, maxx, maxf)
Dim j As Long
Dim x As Double, y As Double, fn As Double
maxf = -1000000000#
For j = 1 To n
    x = xmin + (xmax - xmin) * Rnd
    y = ymin + (ymax - ymin) * Rnd
    fn = f(x, y)
    If fn > maxf Then
        maxf = fn
        maxx = x
        maxy = Y
        End If
Next j
End Sub
Function f(x, y)
f = 4*x x 2 * y + x^ ^ - 2 * x^ ^ 4 + 2 * x* y - 3* y^ 2
End Function
```

The result of running this program for different number of iterations yields the results in the following table. We have also included to exact result.

\boldsymbol{n}	$\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$	\boldsymbol{x}	\boldsymbol{y}
1000	4.31429	1.011782	0.613747
10000	4.34185	0.961359	0.678104
100000	4.34338	0.964238	0.641633
1000000	4.34397	0.965868	0.656765
10000000	4.34401	0.967520	0.655715
truth	4.34401	0.967580	0.655860

14.10 The following code implements the grid search algorithm in VBA:

```
Option Explicit
Sub GridSearch()
Dim nx As Long, ny As Long
Dim xmin As Double, xmax As Double, ymin As Double, ymax As Double
Dim maxf As Double, maxx As Double, maxy As Double
xmin = -2: xmax = 2: ymin = 1: ymax = 3
nx}=100
ny = 1000
Call GridSrch(nx, ny, xmin, xmax, ymin, ymax, maxy, maxx, maxf)
MsgBox maxf
MsgBox maxx
MsgBox maxy
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

```
End Sub
Sub GridSrch(nx, ny, xmin, xmax, ymin, ymax, maxy, maxx, maxf)
Dim i As Long, j As Long
Dim x As Double, y As Double, fn As Double
Dim xinc As Double, yinc As Double
xinc = (xmax - xmin) / nx
yinc = (ymax - ymin) / ny
maxf = -1000000000#
x = xmin
For i = 0 To nx
    y = ymin
    For j = 0 To ny
        fn = f(x, y)
        If fn > maxf Then
            maxf = fn
            maxx = x
            maxy = y
        End If
        y = y + yinc
    Next j
    x = x + xinc
Next i
End Sub
Function f(x, y)
f = y - x - 2 * x ^ 2 - 2 * x* y - y^ 2
End Function
```

14.11
$f(x, y)=6 x^{2} y-9 y^{2}-8 x^{2}$
$\frac{\partial f}{\partial x}=12 x y-16 x \Rightarrow 12(2)(4)-16(4)=32$
$\frac{\partial f}{\partial y}=6 x^{2}-18 y \Rightarrow 6(4)^{2}-18(2)=60$
$\nabla f=32 \hat{i}+60 \hat{j}$
$f\left(x_{o}+\frac{\partial f}{\partial x} h, y_{o}+\frac{\partial f}{\partial y} h\right)=f(4+32 h, 2+60 h)$

$$
=6(4+32 h)^{2}(2+60 h)-9(2+60 h)^{2}-8(4+32 h)^{2}
$$

$g(x)=368,640 h^{3}+63,856 h^{2}+4,624 h+28$

14.12

$f(x, y)=2 x^{3} y^{2}-7 y x+x^{2}+3 y$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=6 x^{2} y^{2}-7 y+2 x \Rightarrow 6(1)(1)-7(1)+2(1)=1 \\
& \frac{\partial f}{\partial x}=4 x^{3} y-7 x+3 \Rightarrow 4(1)(1)-7(1)+3=0 \\
& \nabla f=1 \hat{i}+0 \hat{j} \\
& \begin{array}{r}
f\left(x_{o}+\frac{\partial f}{\partial x} h, y_{o}+\frac{\partial f}{\partial y} h\right)=f(1+h, 1+0 h) \\
=2(1+h)^{3}(1)^{2}-7(1+h)(1)+(1+h)^{2}+3(1)
\end{array}
\end{aligned}
$$

$$
g(x)=2 h^{3}+7 h^{2}+h-1
$$

