CHAPTER 15

15.1 (a) Define $x_{a}=$ amount of product A produced, and $x_{b}=$ amount of product B produced. The objective function is to maximize profit,

$$
P=45 x_{a}+20 x_{b}
$$

Subject to the following constraints

$$
\begin{array}{ll}
20 x_{a}+5 x_{b} \leq 9500 & \text { \{raw materials } \\
0.04 x_{a}+0.12 x_{b} \leq 40 & \text { \{production time \}} \\
x_{a}+x_{b} \leq 550 & \text { \{storage \}} \\
x_{a}, x_{b} \geq 0 & \text { \{positivity \}}
\end{array}
$$

(b) To solve graphically, the constraints can be reformulated as the following straight lines
$x_{b}=1900-4 x_{a}$
$x_{b}=333.3333-0.333333 x_{a}$
$x_{b}=550-x_{a}$
\{raw materials $\}$
\{production time\}
\{storage

The objective function can be reformulated as
$x_{b}=(1 / 20) P-2.25 x_{a}$
The constraint lines can be plotted on the $x_{a}-x_{b}$ plane to define the feasible space. Then the objective function line can be superimposed for various values of P until it reaches the boundary. The result is $P \cong 22,250$ with $x_{a} \cong 450$ and $x_{b} \cong 100$. Notice also that material and storage are the binding constraints and that there is some slack in the time constraint.

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
(c) The simplex tableau for the problem can be set up and solved as

Basis	\boldsymbol{P}	$\boldsymbol{x}_{\boldsymbol{a}}$	$\boldsymbol{x}_{\boldsymbol{b}}$	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	\boldsymbol{S}_{3}	Solution	Intercept
P	1	-45	-20	0	0	0	0	
S_{1}	0	20	5	1	0	0	9500	475
S_{2}	0	0.04	0.12	0	1	0	40	1000
S_{3}	0	1	1	0	0	1	550	550
Basis	\boldsymbol{P}	$\boldsymbol{x}_{\boldsymbol{a}}$	$\boldsymbol{X}_{\boldsymbol{b}}$	\boldsymbol{S}_{1}	\boldsymbol{S}_{2}	\boldsymbol{S}_{3}	Solution	Intercept
P	1	0	-8.75	2.25	0	0	21375	
x_{a}	0	1	0.25	0.05	0	0	475	1900
S_{2}	0	0	0.11	-0.002	1	0	21	190.9091
S_{3}	0	0	0.75	-0.05	0	1	75	100
Basis	\boldsymbol{P}	$\boldsymbol{x}_{\boldsymbol{a}}$	$\boldsymbol{x}_{\boldsymbol{b}}$	\boldsymbol{S}_{1}	$\boldsymbol{S}_{\mathbf{2}}$	\boldsymbol{S}_{3}	Solution	Intercept
P	1	0	0	1.666667	0	11.66667	22250	
x_{a}	0	1	0	0.066667	0	-0.33333	450	
S_{2}	0	0	0	0.005333	1	-0.14667	10	
x_{b}	0	0	1	-0.06667	0	1.333333	100	

(d) An Excel spreadsheet can be set up to solve the problem as

	A	B	C	D	E
1		xA	xB	total constraint	
2	amount	0	0		
3	time	0.04	0.12	0	40
4	storage	1	1	0	550
5	raw material	20	5	0	9500
6	profit	45	20	0	

The formulas in column D are

	A	B	C	D	E
1		xA	xB	total	constraint
2	amount	0	0		
3	time	0.04	0.12	$=\mathrm{B} 3^{*} \mathrm{~B} \$ 2+\mathrm{C} 3^{*} \mathrm{C} \$ 2$	40
4	storage	1	1	$=\mathrm{B} 4^{*} \mathrm{~B} \$ 2+\mathrm{C} 4^{*} \mathrm{C} \$ 2$	550
5	raw material	20	5	$=\mathrm{B} 5^{*} \mathrm{~B} \$ 2+\mathrm{C} 5^{*} \mathrm{C} \$ 2$	9500
6	profit	45	20	$=\mathrm{B} 6^{*} \mathrm{~B} \$ 2+\mathrm{C} 6^{*} \mathrm{C} \$ 2$	

The Solver can be called and set up as

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Before depressing the Solve button, depress the Options button and check the boxes to "Assume Linear Model" and "Assume Non-Negative."

Solver Options		
Max Time:	100 seconds	OK
Iterations:	100	Cancel
Precision:	0.000001	Load Model...
Tolerance:	5	Save Model...
Conyergence:	0.0001	Help
Assume Line Assume Non	Model	dutomatic Scaling
Estimates Tangent Quadratic	Derivatives Forward Central	Search Newton Conjugate

The resulting solution is

	A	B	C	D	E
1		xA	xB	total	constraint
2	amount	450	100		
3	time	0.04	0.12	30	40
4	storage	1	1	550	550
5	raw material	20	5	9500	9500
6	profit	45	20	22250	

In addition, a sensitivity report can be generated as

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

	A	B	C	D	E	F	G	H	
1	Microsoft Excel 11.0 Sensitivity Report Worksheet: [prob1501.xIs]Graphical Report Created: 6/30/2005 3:19:02 PM								
2									
3									
4									
5									
6	Adjustable Cells								
7				Final	Reduced	Objective	Allowable	Allowable Decrease	
8		Cell	Name	Value	Cost	Coefficient	Increase		
9		\$B\$2 amount \times A		450	0	45	35	25	
10		\$C $\$ 2$ amount $\times \mathrm{B}$		100	0	20	25	5 8.75	
11	Constraints								
12									
13	Ce			Final	Shadow	Constraint R.H. Side	Allowable Increase	Allowable Decrease	
14			Name	Value	Price				
15		\$D\$3	time total	30	0	40	1E+30	10	
16		\$D\$4	storage total	550	11.66666667	550	68.18181818	75	
17		\$D\$5	raw material total	9500	1.666666667	9500	1500	1875	

(e) The high shadow price for storage from the sensitivity analysis from (d) suggests that increasing storage will result in the best increase in profit.
15.2 (a) The LP formulation is given by

$$
\text { Maximize } Z=150 x_{1}+175 x_{2}+250 x_{3} \quad\{\text { Maximize profit }\}
$$

subject to

$$
\begin{array}{ll}
7 x_{1}+11 x_{2}+15 x_{3} \leq 154 & \text { \{Material constraint \}} \\
10 x_{1}+8 x_{2}+12 x_{3} \leq 80 & \text { \{Time constraint \}} \\
x_{1} \leq 9 & \text { \{"Regular" storage constraint \}} \\
x_{2} \leq 6 & \text { \{"Premium" storage constraint \}} \\
x_{3} \leq 5 & \{\text { "Supreme" storage constraint\} } \\
x_{1}, x_{2}, x_{3} \geq 0 & \text { \{Positivity constraints \}}
\end{array}
$$

(b) The simplex tableau for the problem can be set up and solved as

Basis	Z	${ }_{1}$	X_{2}	${ }^{2}$	S_{1}	S_{2}		S_{3}	S_{4}	S_{5}	Solution	Intercept
Z	1	-150	-175	-250	0		0	0	0	0	0	
S1	0	7	11	15	1		0	0	0	0	154	10.2667
S2	0	10	8	12	0		1	0	0	0	80	6.66667
S3	0	1	0	0	0		0	1	0	0	9	∞
S4	0	0	1	0	0		0	0	1	0	6	∞
S5	0	0	0	1	0		0	0	0	1	5	5
Basis	Z	χ_{1}	X_{2}	χ_{3}	S_{1}	S_{2}		S_{3}	S_{4}	S_{5}	Solution	Intercept
Z	1	-150	-175	0	0		0	0	0	250	1250	
S1	0	7	11	0	1		0	0	0	-15	79	7.18182
S2	0	10	8	0	0		1	0	0	-12	20	2.5
S3	0	1	0	0	0		0	1	0	0	9	∞
S4	0	0	1	0	0		0	0	1	0	6	6

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

x3	0	0	0	1	0	0	0	0	1	5	∞
Basis	Z	${ }^{1}$	χ_{2}	χ_{3}	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	Solution	Intercept
Z	1	68.75	0	0	0	21.88	0	0	-12.5	1687.5	
S1	0	-6.75	0	0	1	-1.375	0	0	1.5	51.5	34.3333
x2	0	1.25	1	0	0	0.125	0	0	-1.5	2.5	-1.66667
S3	0	1	0	0	0	0	1	0	0	9	∞
S4	0	-1.25	0	0	0	-0.125	0	1	1.5	3.5	2.33333
x3	0	0	0	1	0	0	0	0	1	5	5

Basis	\boldsymbol{Z}	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$	\boldsymbol{x}_{3}	\boldsymbol{S}_{1}	$\boldsymbol{S}_{\mathbf{2}}$	\boldsymbol{S}_{3}	$\boldsymbol{S}_{\mathbf{4}}$	$\boldsymbol{S}_{\mathbf{5}}$	Solution
Z	1	58.3333	0	0	0	20.83	0	8.33	0	1716.7
S1	0	-5.5	0	0	1	-1.25	0	-1	0	48
x2	0	0	1	0	0	0	0	1	0	6
S3	0	1	0	0	0	0	1	0	0	9
S5	0	-0.8333	0	0	0	-0.083	0	0.67	1	2.3333
x3	0	0.83333	0	1	0	0.083	0	-0.67	0	2.6667

(c) An Excel spreadsheet can be set up to solve the problem as

	A	B	C	D	E	F
1		regular	premium	supreme total	constraint	
2	amount	0	0	0		
3	material	7	11	15	0	154
4	time	10	8	12	0	80
5	reg stor	1	0	0	0	9
6	prem stor	0	1	0	0	6
7	sup stor	0	0	1	0	5
8	profit	150	175	250	0	

The formulas in column E are

	A	B	C	D	E	F
1		regular	premium	supreme	total	constraint
2	amount	0	0	0		
3	material	7	11	15	$=\mathrm{B} 3^{*} \mathrm{~B} \$ 2+\mathrm{C} 3^{*} \mathrm{C} \$ 2+\mathrm{D} 3^{*} \mathrm{D} \$ 2$	154
4	time	10	8	12	$=\mathrm{B} 4^{*} \mathrm{~B} \$ 2+\mathrm{C} 4^{*} \mathrm{C} \$ 2+\mathrm{D} 4^{*} \mathrm{D} \$ 2$	80
5	reg stor	1	0	0	$=\mathrm{B} 5^{*} \mathrm{~B} \$ 2+\mathrm{C} 5^{*} \mathrm{C} \$ 2+\mathrm{D} 5^{*} \mathrm{D} \$ 2$	9
6	prem stor	0	1	0	$=\mathrm{B} 6^{*} \mathrm{~B} \$ 2+\mathrm{C} 6^{*} \mathrm{C} \$ 2+\mathrm{D} 6^{*} \mathrm{D} \$ 2$	6
7	sup stor	0	0	1	$=\mathrm{B} 7^{*} \mathrm{~B} \$ 2+\mathrm{C} 7^{*} \mathrm{C} \$ 2+\mathrm{D} 7^{*} \mathrm{D} \$ 2$	5
8	profit	150	175	250	$=\mathrm{B} 8^{*} \mathrm{~B} \$ 2+\mathrm{C} 8^{*} \mathrm{C} \$ 2+\mathrm{D} 8^{*} \mathrm{D} \$ 2$	

The Solver can be called and set up as

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

The resulting solution is

	A	B	C	D	E	F
1		regular	premium	supreme	total	constraint
2	amount	0	6	2.666667		
3	material	7	11	15	106	154
4	time	10	8	12	80	80
5	reg stor	1	0	0	0	9
6	prem stor	0	1	0	6	6
7	sup stor	0	0	1	2.666667	5
8	profit	150	175	250	1716.667	

In addition, a sensitivity report can be generated as

	A	B	C	D	E	F	G	H	
1	Microsoft Excel 11.0 Sensitivity Report Worksheet: [Book1]Sheet1								
2									
3	Report Created: 6/24/2005 2:41:55 PM								
4									
5									
6	Adjustable Cells								
7 8	Cell		Name	Final Value	Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease	
9	\$B\$2 amount regular			0	-58.33333333	150	58.33333333	$1 \mathrm{E}+30$8.3333333470	
10	\$C\$2 amount premium			6	0	175	$1 \mathrm{E}+30$		
11	\$D\$2 amount supreme			2.666666667	0	250	12.5	70	
12	Constraints								
13									
14 15	Cell		Name	Final Value	Shadow Price	Constraint R.H. Side	Allowable Increase	Allowable Decrease	
16		\$E\$3	material total	106	0	154	$1 \mathrm{E}+30$	48	
17		\$E\$4	time total	80	20.83333333	80	28	32	
18		\$E\$5	reg stor total	0	0	9	$1 \mathrm{E}+30$	9	
19		\$E\$6	prem stor total	6	8.333333334	6	4	3.5	
20		\$E\$7	sup stor total	2.666666667	0	5	$1 \mathrm{E}+30$	2.333333333	

(d) The high shadow price for time from the sensitivity analysis from (c) suggests that increasing time will result in the best increase in profit.
15.3 (a) To solve graphically, the constraints can be reformulated as the following straight lines

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$$
\begin{aligned}
& y=6.22222-0.53333 x \\
& y=7.2727-0.90909 x \\
& y=9-2.5 x
\end{aligned}
$$

The objective function can be reformulated as
$y=0.8 P-1.4 x$
The constraint lines can be plotted on the $x-y$ plane to define the feasible space. Then the objective function line can be superimposed for various values of P until it reaches the boundary. The result is $P \cong 9.30791$ with $x \cong 1.4$ and $y \cong 5.5$.

(b) The simplex tableau for the problem can be set up and solved as

Basis	\boldsymbol{P}	\boldsymbol{X}	\boldsymbol{y}	\boldsymbol{S}_{1}	\boldsymbol{S}_{2}	\boldsymbol{S}_{3}	Solution	Intercept
\boldsymbol{P}	1	-1.75	-1.25	0	0	0	0	
\boldsymbol{S}_{1}	0	1.2	2.25	1	0	0	14	11.66667
\boldsymbol{S}_{2}	0	1	1.1	0	1	0	8	8
\boldsymbol{S}_{3}	0	2.5	1	0	0	1	9	3.6
Basis	\boldsymbol{P}	\boldsymbol{X}	\boldsymbol{y}	\boldsymbol{S}_{1}	\boldsymbol{S}_{2}	\boldsymbol{S}_{3}	Solution	Intercept
\boldsymbol{P}	1	0	-0.55	0	0	0.7	6.3	
\boldsymbol{S}_{1}	0	0	1.77	1	0	-0.48	9.68	5.468927
\boldsymbol{S}_{2}	0	0	0.7	0	1	-0.4	4.4	6.285714
\boldsymbol{x}	0	1	0.4	0	0	0.4	3.6	9
Basis	\boldsymbol{P}	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{S}_{1}	\boldsymbol{S}_{2}	\boldsymbol{S}_{3}	Solution	Intercept
P	1	0	0	0.310734	0	0.550847	9.30791	
\boldsymbol{y}	0	0	1	0.564972	0	-0.27119	5.468927	
\boldsymbol{S}_{2}	0	0	0	-0.39548	1	-0.21017	0.571751	
\boldsymbol{x}	0	1	0	-0.22599	0	0.508475	1.412429	

(c) An Excel spreadsheet can be set up to solve the problem as

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

	A	B	C	D	E
1		x	y	total constraint	
2	amount	0	0		
3	constraint 1	1.2	2.25	0	14
4	constraint 2	1	1.1	0	8
5	constraint 3	2.5	1	0	9
6	profit	1.75	1.25	0	

The formulas in column D are

| | A | B | C | D | E |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: |
| 1 | | x | y | total | constraint |
| 2 | amount | 0 | 0 | | |
| 3 | constraint 1 | 1.2 | 2.25 | $=\mathrm{B} 3^{*} \mathrm{~B} \$ 2+\mathrm{C} 3^{*} \mathrm{C} \$ 2$ | 14 |
| 4 | constraint 2 | 1 | 1.1 | $=\mathrm{B} 4^{*} \mathrm{~B} \$ 2+\mathrm{C} 4^{*} \mathrm{C} \$ 2$ | 8 |
| 5 | constraint 3 | 2.5 | 1 | $=\mathrm{B} 5^{*} \mathrm{~B} \$ 2+\mathrm{C} 5^{*} \mathrm{C} \$ 2$ | 9 |
| 6 | profit | 1.75 | 1.25 | $=\mathrm{B} 6^{*} \mathrm{~B} \$ 2+\mathrm{C} 6^{*} \mathrm{C} \$ 2$ | |

The Solver can be called and set up as

The resulting solution is

	A	B	C	D	E
1		x	y	total constraint	
2	amount	1.412429	5.468927		
3	constraint 1	1.2	2.25	14	14
4	constraint 2	1	1.1	7.428249	8
5	constraint 3	2.5	1	9	9
6	profit	1.75	1.25	9.30791	

15.4 (a) To solve graphically, the constraints can be reformulated as the following straight lines

$$
\begin{aligned}
& y=20-2.5 x \\
& y=10-10 x \\
& y=8-0.5 x
\end{aligned}
$$

The objective function can be reformulated as

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
$y=0.125 P-0.75 x$
The constraint lines can be plotted on the $x-y$ plane to define the feasible space. Then the objective function line can be superimposed for various values of P until it reaches the boundary. The result is $P \cong 72$ with $x \cong 4$ and $y \cong 6$.

(b) The simplex tableau for the problem can be set up and solved as

Basis	\boldsymbol{P}	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{S}_{1}	\boldsymbol{S}_{2}	\boldsymbol{S}_{3}	Solution	Intercept
P	1	-6	-8	0	0	0	0	
S_{1}	0	5	2	1	0	0	40	20
S_{2}	0	6	6	0	1	0	60	10
S_{3}	0	2	4	0	0	1	32	8
Basis	\boldsymbol{P}	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{S}_{1}	\boldsymbol{S}_{2}	\boldsymbol{S}_{3}	Solution	Intercept
P	1	-2	0	0	0	2	64	
S_{1}	0	4	0	1	0	-0.5	24	6
S_{2}	0	3	0	0	1	-1.5	12	4
y	0	0.5	1	0	0	0.25	8	16
Basis	\boldsymbol{P}	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{S}_{1}	\boldsymbol{S}_{2}	\boldsymbol{S}_{3}	Solution	Intercept
P	1	0	0	0	0.666667	1	72	
S_{1}	0	0	0	1	-1.33333	1.5	8	
x	0	1	0	0	0.333333	-0.5	4	
y	0	0	1	0	-0.16667	0.5	6	

(c) An Excel spreadsheet can be set up to solve the problem as

	A	B	C	D	E
1		x	y	total constraint	
2	amount	0	0		
3	constraint 1	5	2	0	40
4	constraint 2	6	6	0	60
5	constraint 3	2	4	0	32
6	profit	6	8	0	

The formulas in column D are

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

	A	B	C	D	E	
1			x		y	total
2	amount	0		0		constraint
3	constraint 1	5	2	$=\mathrm{B} 3^{*} \mathrm{~B} \$ 2+\mathrm{C} 3^{*} \mathrm{C} \$ 2$	40	
4	constraint 2	6	6	$=\mathrm{B} 4^{*} \mathrm{~B} \$ 2+\mathrm{C} 4^{*} \mathrm{C} \$ 2$	60	
5	constraint 3	2	4	$=\mathrm{B} 5^{*} \mathrm{~B} \$ 2+\mathrm{C} 5^{*} \mathrm{C} \$ 2$	32	
6	profit	6	8	$=\mathrm{B} 6^{*} \mathrm{~B} \$ 2+\mathrm{C} 6^{*} \mathrm{C} \$ 2$		

The Solver can be called and set up as

The resulting solution is

	A	B	C	D	E
1		x	y	total	constraint
2	amount	4	6		
3	constraint 1	5	2	32	40
4	constraint 2	6	6	60	60
5	constraint 3	2	4	32	32
6	profit	6	8	72	

15.5 An Excel spreadsheet can be set up to solve the problem as

	A	B
1	x	0
2	y	0
3	$f(x, y)$	0
4	Constraint:	
5	$2 x+y=$	0

The formulas are

	A	B
1	x	0
2	y	0
3	$f(x, y)$	$=1.2^{*} B 1+2^{*} B 2-B 2^{\wedge} 3$
4	Constraint:	
5	$2 x+y=$	$=2^{*} B 1+B 2$

The Solver can be called and set up as

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

The resulting solution is

	A	B
1	x	0.658435
2	y	0.68313
3	$\mathrm{f}(\mathrm{x}, \mathrm{y})$	1.837588
4	Constraint:	
5	$2 \mathrm{x}+\mathrm{y}=$	2

15.6 An Excel spreadsheet can be set up to solve the problem as

	A	B
1	x	0
2	y	0
3	$f(x, y)$	
4	Constraints:	
5	$x^{\wedge} 2+y^{\wedge} 2$	0
6	$x+2 y$	0

The formulas are

	A	B
1	x	0
2	y	0
3	$f(x, y)$	$=15^{*} \mathrm{~B} 1+15^{\star} \mathrm{B} 2$
4	Constraints:	
5	$x^{\wedge} 2+y^{\wedge} 2$	$=B 1^{\wedge} 2+\mathrm{B} 2^{\wedge} 2$
6	$x+2 y$	$=B 1+2^{\star} \mathrm{B} 2$

The Solver can be called and set up as

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

The resulting solution is

	A	B
1	x	0.727247
2	y	0.686377
3	$f(x, y)$	21.20435
4	Constraints:	
5	$x^{\wedge} 2+y^{\wedge} 2$	1.000001
6	$x+2 y$	2.1

15.7 (a) The function and the constraint can be plotted and as shown indicate a solution of $x=2$ and $y=1$.

(b) An Excel spreadsheet can be set up to solve the problem as

	A	B	C	D
1	x	0		
2	y	0		
3	Minimize			
4	$f(x, y)$	18		
5	Subject to			
6	$x+2 y=$	0	$=$	4

The formulas are

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

A	C	B	C	D
1	x	0		
2	y	0		
3	Minimize			
4	$f(x, y)$	$=(B 1-3)^{\wedge} 2+(B 2-3)^{\wedge} 2$		
5	Subject to			
6	$x+2 y=$	$=B 1+2^{*} B 2$	$=$	4

The Solver can be called and set up as

The resulting solution is

	A	B	C	D
1	x	2		
2	y	1		
3	Minimize			
4	$f(x, y)$	5		
5	Subject to			
6	$x+2 y=$	4	$=$	4

15.8 This problem can be solved with a variety of software tools.

Excel: An Excel spreadsheet can be set up to solve the problem as

	A	B
1	x	0
2	y	0
3	Maximize	
4	$f(x, y)$	0

The formulas are

	A	B
1	x	0
2	y	0
3	Maximize	
4	$\mathrm{f}(x, y)$	$=2.25^{*} \mathrm{~B} 1^{*} \mathrm{~B} 2+1.75^{*} \mathrm{~B} 2-1.5^{*} \mathrm{~B} 1^{\wedge} 2-2^{*} \mathrm{~B} 2^{\wedge} 2$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

The Solver can be called and set up as

The resulting solution is

	A	B
1	x	0.567568
2	y	0.756757
3	Maximize	
4	$\mathrm{f}(\mathrm{x}, \mathrm{y})$	0.662162

MATLAB: Set up an M-file to hold the negative of the function

```
function f=fxy(x)
f = - (2.25*x(1)*x(2)+1.75*x(2)-1.5*x(1)^2-2*x(2)^2);
```

Then, the MATLAB function fminsearch can be used to determine the maximum:

```
>> x=fminsearch(@fxy,[0,0])
x =
    0.5676 0.7568
>> fopt=-fxy(x)
fopt =
    0.6622
```

15.9 This problem can be solved with a variety of software tools.

Excel: An Excel spreadsheet can be set up to solve the problem as

	A	B
1	x	0
2	y	0
3	Maximize	
4	$f(x, y)$	0

The formulas are
PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

	A	B
1	x	0 亿
2	y	0
3	Maximize	
4	$f(x, y)$	$=4^{*} \mathrm{~B} 1+2^{*} \mathrm{~B} 2+\mathrm{B} 1^{\wedge} 2-2^{*} \mathrm{~B} 1^{\wedge} 4+2^{*} \mathrm{~B} 1^{*} \mathrm{~B} 2-3^{*} \mathrm{~B} 2^{\wedge} 2$

The Solver can be called and set up as

The resulting solution is

	A	B
1	x	0.96758
2	y	0.65586
3	Maximize	
4	$\mathrm{f}(\mathrm{x}, \mathrm{y})$	4.344006

MATLAB: Set up an M-file to hold the negative of the function

```
function f=fxy(x)
f = - (4*x(1) +2*x(2)+x(1)^2-2*x(1)^4+2*x(1)*x(2)-3*x(2)^2);
```

Then, the MATLAB function fminsearch can be used to determine the maximum:

```
>> x=fminsearch(@fxy,[1,1])
x =
    0.9676 0.6559
>> fopt=-fxy(x)
fopt =
    4.3440
```

15.10 (a) This problem can be solved graphically by using a software package to generate a contour plot of the function. For example, the following plot can be developed with Excel. As can be seen, a minimum occurs at approximately $x=3.3$ and $y=-0.7$.

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

(b) We can use a software package like MATLAB to determine the minimum by first setting up an M -file to hold the function as

```
function f=fxy(x)
f = -8*x(1)+x(1)^2+12*x(2)+4*x(2)^2-2*x(1)*x(2);
```

Then, the MATLAB function fminsearch can be used to determine the location of the minimum as:

```
>> x=fminsearch(@fxy,[0,0])
x =
    3.3333 -0.6666
```

Thus, $x=3.3333$ and $y=-0.6666$.
(c) A software package like MATLAB can then be used to evaluate the function value at the minimum as in

```
>> fopt=fxy(x)
fopt =
    -17.3333
```

(d) We can verify that this is a minimum as follows

$$
\begin{array}{ll}
\frac{\partial^{2} f}{\partial x^{2}}=2 & \frac{\partial^{2} f}{\partial y^{2}}=8 \\
H=\left[\begin{array}{cc}
2 & -2 \\
-2 & 8
\end{array}\right] & \left.\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=-2 \\
|H|=2 \times 8-(-2)(-2)=12 &
\end{array}
$$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Therefore the result is a minimum because $|H|>0$ and $\partial^{2} f / \partial x^{2}>0$.
15.11 The volume of a right circular cone can be computed as

$$
V=\frac{\pi r^{2} h}{3}
$$

where $r=$ the radius and $h=$ the height. The area of the cone's side is computed as

$$
A_{s}=\pi r s
$$

where $s=$ the length of the side which can be computed as

$$
s=\sqrt{r^{2}+h^{2}}
$$

The area of the circular cover is computed as

$$
A_{c}=\pi r^{2}
$$

(a) Therefore, the optimization problem with no side slope constraint can be formulated as

$$
\operatorname{minimize} \quad C=100 \mathrm{~V}+50 A_{s}+25 A_{c}
$$

subject to
$V \geq 50$
A solution can be generated in a number of different ways. For example, using Excel

	A	B		C	D	E
1	Decision variables:	1				
2	rad					
3	h	1				
4						
5	Computed values:					
6	s	1.414213562				
7	slope	0.785398163	radians		45	
8	Side area	4.442882938				
9	Lid area	3.141592654				
10						
11	Constraints:					
12	Volume	1.047197551	$>$			
13						50
14						
15	Objective function:					
16	Area cost	$\$$	50.00			
17	Volume cost	$\$$	100.00			
18	Lid cost	$\$$	25.00			
19						
20	Total cost	$\$$	405.40			

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

The underlying formulas can be displayed as

	A	B	C	D	E
1	Decision variables:				
2	rad	1			
3	h	1			
4					
5	Computed values:				
6	s	$=S Q R T\left(B 2^{\wedge} 2+B 3^{n} 2\right)$			
7	slope	= ATAN(B3/B2)	radians	$=\mathrm{B7*180/P10}$	degrees
8	Side area	$=\mathrm{Pl} 0^{*}{ }^{\text {B }} 2 * \mathrm{B6}$			
9	Lid area	$=\mathrm{P} 10{ }^{*} \mathrm{~B}^{2} 2$			
10					
11	Constraints:				
12	Volume	$=P 10 * B 2^{\wedge} 2^{*} \mathrm{~B} 3 / 3$	>=	50	
13					
14					
15	Objective function:				
16	Area cost	50			
17	Volume cost	100			
18	Lid cost	25			
19					
20	Total cost	$=\mathrm{B} 16^{*} \mathrm{~B} 8+\mathrm{B} 17^{*} \mathrm{~B} 12+\mathrm{B} 18^{*} \mathrm{~B} 9$			

The Solver can be implemented as

The result is

	A	B	C	D	E
1	Decision variables:				
2	rad	2.844611637			
3	h	5.900589766			
4					
5	Computed values:				
6	s	6.550478986			
7	slope	1.121579609	radians	64.26178	degrees
8	Side area	58.5390827			
9	Lid area	25.4211877			
10					
11	Constraints:				
12	Volume		50	$>$	
13					
14					
15	Objective function:				
16	Area cost	$\$$	50.00		
17	Volume cost	$\$$	100.00		
18	Lid cost	$\$$	25.00		
19					
20	Total cost	$\$$	$8,562.48$		

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
(b) The optimization problem with the side slope constraint can be formulated as
minimize $C=100 V+50 A_{s}+25 A_{c}$
subject to
$V \geq 50$
$\frac{h}{r} \leq 1$

A solution can be generated in a number of different ways. For example, using Excel

	A	B	C	D	E
1	Decision varia	les:			
2	rad	1			
3	h	1			
4					
5	Computed val				
6	s	1.414213562			
7	slope	0.785398163	radians	45	degrees
8	Side area	4.442882938			
9	Lid area	3.141592654			
10					
11	Constraints:				
12	Volume	1.047197551	$>=$	50	
13	slope	45	$<=$	45	
14					
15	Objective functio				
16	Area cost	\$ 50.00			
17	Volume cost	\$ 100.00			
18	Lid cost	\$ 25.00			
19					
20	Total cost	\$ 405.40			

The underlying formulas can be displayed as

	A	B	C	D	E
1	Decision variables:				
2	rad	1			
3	h	1			
4					
5	Computed values:				
6	s	$=S Q R T\left(B 2^{n} 2+3^{n} 2\right)$			
7	slope	=ATAN(B3/B2)	radians	= $\mathrm{B}^{*} 180 / \mathrm{Pl} 10$	degrees
8	Side area	= Pl0*B2*B6			
9	Lid area	$=\mathrm{P} 10{ }^{*} \mathrm{~B}^{2} 2$			
10					
11	Constraints:				
12	Volume	$=\mathrm{Pl} 0^{*} \mathrm{~B}^{\prime 2} 2^{*} \mathrm{~B} 3 / 3$	$>=$	50	
13	slope	= D7	<	45	
14					
15	Objective function:				
16	Area cost	50			
17	Volume cost	100			
18	Lid cost	25			
19					
20	Total cost	= $\mathrm{B} 16 * \mathrm{~B} 8+\mathrm{B} 17 * \mathrm{~B} 12+\mathrm{B} 18 * \mathrm{~B} 9$			

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

The Solver can be implemented as

The result is

	A	B	C	D	E	
1	Decision variables:					
2	rad	3.627831676				
3	h	3.627831676				
4						
5	Computed values:					
6	s	5.130528758				
7	slope	0.785398163	radians		45	
8	Side area	58.47350507				
9	Lid area	41.34701196				
10						
11	Constraints:					
12	Volume	49.9999999	$>=$		50	
13	slope		45	s		45
14						
15	Objective function:					
16	Area cost	$\$$	50.00			
17	Volume cost	$\$$	100.00			
18	Lid cost	$\$$	25.00			
19						
20	Total cost	$\$$	$8,957.35$			

15.12 Assuming that the amounts of the two-door and four-door models are x_{1} and x_{2}, respectively, the linear programming problem can be formulated as

Maximize: $\quad z=13,500 x_{1}+15,000 x_{2}$
subject to

$$
\begin{aligned}
& 15 x_{1}+20 x_{2} \leq 8,000 \\
& 700 x_{1}+500 x_{2} \leq 240,000 \\
& x_{1} \leq 400 \\
& x_{2} \leq 350 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

(a) To solve graphically, the constraints can be reformulated as the following straight lines $x_{2}=400-0.75 x_{1}$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
$x_{2}=480-1.4 x_{1}$
$x_{1}=400$
$x_{2}=350$
The objective function can be reformulated as
$x_{2}=(1 / 15,000) z-0.9 x_{1}$
The constraint lines can be plotted on the $x_{1}-x_{2}$ plane to define the feasible space. Then the objective function line can be superimposed for various values of z until it reaches the boundary. The result is $z \cong \$ 6,276,923$ with $x_{1} \cong 123.08$ and $x_{2} \cong 307.69$.

(b) The solution can be generated with Excel as in the following worksheet

	A	B	C	D	E
1		$\times 1$	$\times 2$	total	constraint
2	amount	0	0		
3	time	15	20	0	8000
4	demand	700	500	0	240000
5	Storage	1		0	400
6	Storage		1	0	350
7	profit	13500	15000	0	

The underlying formulas can be displayed as

	A	B	C	D	E
1		$\times 1$	x 2	total	constraint
2	amount	122	308		
3	time	15	20	$=\mathrm{B} 3^{*} \mathrm{~B} \$ 2+\mathrm{C} 3^{\star} \mathrm{C} \$ 2$	8000
4	demand	700	500	$=\mathrm{B} 4^{*} \mathrm{~B} \$ 2+\mathrm{C} 4^{*} \mathrm{C} \$ 2$	240000
5	Storage	1		$=\mathrm{B} 5^{*} \mathrm{~B} \$ 2+\mathrm{C} 5^{\star} \mathrm{C} \$ 2$	400
6	Storage		1	$=\mathrm{B} 6^{*} \mathrm{~B} \$ 2+\mathrm{C} 6^{*} \mathrm{C} \$ 2$	350
7	profit	13500	15000	$=\mathrm{B} 7^{*} \mathrm{~B} \$ 2+\mathrm{C} 7^{*} \mathrm{C} \$ 2$	

The Solver can be implemented as

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Notice how, along with the other constraints, we have specified that the decision variables must be integers. The result of running Solver is

	A	B	C	D	E
1		$\times 1$	$\times 2$	total	constraint
2	amount	122	308		
3	time	15	20	7990	8000
4	demand	700	500	239400	240000
5	Storage	1		122	400
6	Strage		1	308	350
7	profit	13500	15000	6267000	

Thus, because we have constrained the decision variables to be integers, the maximum profit is slightly smaller than that obtained graphically in part (a).
15.13 (a) First, we define the decision variables as
$x_{1}=$ number of clubs produced
$x_{2}=$ number of axes produced
The damages can be parameterized as
damage $/$ club $=2(0.45)+1(0.65)=1.55$ maim equivalents
damage/axe $=2(0.70)+1(0.35)=1.75$ maim equivalents
The linear programming problem can then be formulated as
maximize $Z=1.55 x_{1}+1.75 x_{2}$
subject to

$$
\begin{array}{ll}
5.1 x_{1}+3.2 x_{2} \leq 240 & \text { (materials) } \\
2.1 x_{1}+4.3 x_{2} \leq 200 & \text { (time) } \\
x_{1}, x_{2} \geq 0 & \text { (positivit) }
\end{array}
$$

(b) and (c) To solve graphically, the constraints can be reformulated as the following straight lines

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
$x_{2}=75-1.59375 x_{1}$
$x_{2}=46.51163-0.488372 x_{1}$
The objective function can be reformulated as
$x_{2}=(1 / 1.75) Z-0.885714 x_{1}$
The constraint lines can be plotted on the $x_{1}-x_{2}$ plane to define the feasible space. Then the objective function line can be superimposed for various values of Z until it reaches the boundary. The result is $Z \cong 99.3$ with $x_{1} \cong 25.8$ and $x_{2} \cong 33.9$.

(d) The solution can be generated with Excel as in the following worksheet

	A	B	C	D	E
1		club	axe	value	
2	kills	0.45	0.7	2	
3	maims	0.65	0.35		1
4					
5		0	$\times 2$	total	constraint
6	quantity	0			
7	materials	5.1	3.2	0	240
8	time	2.1	4.3	0	200
9					
10	damage	1.55	1.75	0	

The underlying formulas can be displayed as

	A	B	C	D	E
1		club	axe	value	
2	kills	0.45	0.7	2	
3	maims	0.65	0.35	1	
4					
5		x1	x2	total	constraint
6	quantity	25	34		
7	materials	5.1	3.2	$=\mathrm{B7}{ }^{*} \mathrm{~B} 6+\mathrm{C} 7^{*} \mathrm{C} 6$	240
8	time	2.1	4.3	$=88 * B 6+C 8 * C 6$	200
9					
10	damage	$=\mathrm{D} 2 * \mathrm{~B} 2+\mathrm{D} 3 * \mathrm{~B} 3$	$=\mathrm{D} 2 * \mathrm{C} 2+\mathrm{D} 3^{*} \mathrm{C} 3$	$=\mathrm{B10*} \mathrm{~B} 6+\mathrm{C} 10^{*} \mathrm{C} 6$	

The Solver can be implemented as

Notice how, along with the other constraints, we have specified that the decision variables must be integers. The result of running Solver is

	A	B	C	D	E
1		club	axe	value	
2	kills	0.45	0.7		2
3	maims	0.65	0.35		
4					
5		$\times 1$	$\times 2$	total	constraint
6	quantity	25	34		
7	materials	5.1	3.2	236.3	240
8	time	2.1	4.3	198.7	200
9					
10	damage	1.55	1.75	98.25	

Thus, because we have constrained the decision variables to be integers, the maximum damage is slightly smaller than that obtained graphically in part (c).

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

