CHAPTER 15

15.1 (a) Define x_a = amount of product A produced, and x_b = amount of product B produced. The objective function is to maximize profit,

 $P = 45x_a + 20x_b$

Subject to the following constraints

$20x_a + 5x_b \le 9500$	{raw materials}
$0.04x_a + 0.12x_b \le 40$	{production time}
$x_a + x_b \le 550$	{storage}
$x_a, x_b \ge 0$	{positivity}

(b) To solve graphically, the constraints can be reformulated as the following straight lines

$x_b = 1900 - 4x_a$	{raw materials}
$x_b = 333.3333 - 0.333333x_a$	{production time}
$x_b = 550 - x_a$	{storage}

The objective function can be reformulated as

 $x_{b} = (1/20)P - 2.25x_{a}$

The constraint lines can be plotted on the x_a - x_b plane to define the feasible space. Then the objective function line can be superimposed for various values of P until it reaches the boundary. The result is $P \cong 22,250$ with $x_a \cong 450$ and $x_b \cong 100$. Notice also that material and storage are the binding constraints and that there is some slack in the time constraint.

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. <u>No part of this Manual</u> may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Basis	Р	Xa	Xb	S ₁	S ₂	S ₃	Solution	Intercept
Р	1	-45	-20	0	0	0	0	
S1	0	20	5	1	0	0	9500	475
S ₂	0	0.04	0.12	0	1	0	40	1000
S ₃	0	1	1	0	0	1	550	550
Basis	Р	X.	X.	S	Sa	S	Solution	Intercent
P		, na ()	-8.75	2.25	0	0	21375	interoopt
Xa	0	1	0.25	0.05	Ő	0	475	1900
S ₂	0	0	0.11	-0.002	1	0	21	190.9091
S ₃	0	0	0.75	-0.05	0	1	75	100
Basis	Р	Xa	Xb	S₁	S ₂	S₃	Solution	Intercept
Р	1	0	0	1.666667	0	11.66667	22250	
Xa	0	1	0	0.066667	0	-0.33333	450	
S ₂	0	0	0	0.005333	1	-0.14667	10	
Xb	0	0	1	-0.06667	0	1.333333	100	

(c) The simplex tableau for the problem can be set up and solved as

(d) An Excel spreadsheet can be set up to solve the problem as

	A	B	C	D	E
1	85 E	xА	хВ	total	constraint
2	amount	0	0		
3	time	0.04	0.12	0	40
4	storage	1	1	0	550
5	raw material	20	5	0	9500
6	profit	45	20	0	

The formulas in column D are

	A	В	C	D	E
1	- 55 	xА	хB	total	constraint
2	amount	0	0		
3	time	0.04	0.12	=B3*B\$2+C3*C\$2	40
4	storage	1	1	=B4*B\$2+C4*C\$2	550
5	raw material	20	5	=B5*B\$2+C5*C\$2	9500
6	profit	45	20	=B6*B\$2+C6*C\$2	

The Solver can be called and set up as

Solver Parameters	
Set Target Cell: Equal To: Max Min Value of: U	<u>S</u> olve Close
\$B\$2:\$C\$2 Guess Subject to the Constraints: 4D\$3 <= \$F\$3	Options
\$D\$3 <- \$L\$3	<u>R</u> eset All

Before depressing the Solve button, depress the Options button and check the boxes to "Assume Linear Model" and "Assume Non-Negative."

max <u>n</u> me:	100 seconds	ОК
terations:	100	Cancel
Precision:	0.000001	Load Model
Tol <u>e</u> rance:	5 %	Save Model
Con <u>v</u> ergence:	0.0001	Help
Assume Line	ar Model	e Automatic Scaling
🗹 Assume Non	-Negative 📃 Sh	ow Iteration <u>R</u> esults
Estimates	Derivatives	Search
	Eorward	Newton
Tangent	O Loi wai u	

The resulting solution is

1	A	В	C	D	E
1		xА	xВ	total	constraint
2	amount	450	100		
3	time	0.04	0.12	30	40
4	storage	1	1	550	550
5	raw material	20	5	9500	9500
6	profit	45	20	22250	

In addition, a sensitivity report can be generated as

2	A B	C	D	E	F	G	Н	
1	Micros	oft Excel 11.0 Sen	sitivity F	Report				
2	Works	neet: [prob1501.xls]Graphi	ical				
3	Report	Created: 6/30/2005	5 3:19:02	2 PM				
4	LOCEDED END							
5								
6	Adjusta	ble Cells		10.00				
7	8 82 C		Final	Reduced	Objective	Allowable	Allowable	
8	Cel	Name	Value	Cost	Coefficient	Increase	Decrease	
9	\$B\$2	\$B\$2 amount xA		0	45	35	25	
10	\$C\$2	? amount xB	100	0	20	25	8.75	
11								
12	Constra	iints						
13			Final	Shadow	Constraint	Allowable	Allowable	
14	Cel	Name	Value	Price	R.H. Side	Increase	Decrease	
15	\$D\$3	} time total	30	0	40	1E+30	10	
16	\$D\$4	storage total	550	11.666666667	550	68.18181818	75	
17	\$D\$5	i raw material total	9500	1.666666667	9500	1500	1875	

(e) The high shadow price for storage from the sensitivity analysis from (d) suggests that increasing storage will result in the best increase in profit.

15.2 (a) The LP formulation is given by

Maximize $Z = 150x_1 + 175x_2 + 250x_3$ {Maximize profit}

subject to

$7x_1 + 11x_2 + 15x_3 \le 154$	{Material constraint}
$10x_1 + 8x_2 + 12x_3 \le 80$	{Time constraint}
$x_1 \leq 9$	{"Regular" storage constraint}
$x_2 \leq 6$	{"Premium" storage constraint}
$x_3 \leq 5$	{"Supreme" storage constraint}
$x_1, x_2, x_3 \ge 0$	{Positivity constraints}

(b) The simplex tableau for the problem can be set up and solved as

Basis	Ζ	X 1	X 2	X 3	S₁	S ₂	S₃	S ₄	S ₅	Solution	Intercept
Z	1	-150	-175	-250	0	0	0	0	0	0	
S1	0	7	11	15	1	0	0	0	0	154	10.2667
S2	0	10	8	12	0	1	0	0	0	80	6.66667
S3	0	1	0	0	0	0	1	0	0	9	∞
S4	0	0	1	0	0	0	0	1	0	6	∞
S5	0	0	0	1	0	0	0	0	1	5	5
Basis	Ζ	x 1	X 2	X 3	S ₁	S ₂	S ₃	S ₄	S₅	Solution	Intercept
Basis Z	Z	x 1 -150	x ₂ -175	x ₃ 0	S ₁	S ₂	S₃	S ₄ 0	S ₅ 250	Solution 1250	Intercept
Basis Z S1	Z 1 0	x 1 -150 7	x ₂ -175 11	x ₃ 0 0	S 1 0 1	S ₂ 0 0	S ₃ 0 0	S ₄ 0 0	S₅ 250 -15	Solution 1250 79	Intercept 7.18182
Basis Z S1 S2	Z 1 0 0	x 1 -150 7 10	x ₂ -175 11 8	x ₃ 0 0 0	S ₁ 0 1 0	S ₂ 0 0 1	S ₃ 0 0 0	S ₄ 0 0 0	S ₅ 250 -15 -12	Solution 1250 79 20	Intercept 7.18182 2.5
Basis Z S1 S2 S3	Z 1 0 0 0	x 1 -150 7 10 1	x ₂ -175 11 8 0	x ₃ 0 0 0 0	S 1 0 1 0 0	S₂ 0 0 1 0	S ₃ 0 0 0 1	S ₄ 0 0 0 0	S ₅ 250 -15 -12 0	Solution 1250 79 20 9	Intercept 7.18182 2.5 ∞

x3	0	0	0	1	0	0	0	0	1	5	∞
Basis	Ζ	X 1	X 2	X 3	S ₁	S ₂	S₃	S ₄	S₅	Solution	Intercept
Z	1	68.75	0	0	0	21.88	0	0	-12.5	1687.5	
S1	0	-6.75	0	0	1	-1.375	0	0	1.5	51.5	34.3333
x2	0	1.25	1	0	0	0.125	0	0	-1.5	2.5	-1.66667
S3	0	1	0	0	0	0	1	0	0	9	∞
S4	0	-1.25	0	0	0	-0.125	0	1	1.5	3.5	2.33333
x3	0	0	0	1	0	0	0	0	1	5	5
Basis	Ζ	X 1	X 2	X 3	S ₁	S ₂	S₃	S ₄	S ₅	Solution	
Z	1	58.3333	0	0	0	20.83	0	8.33	0	1716.7	
S1	0	-5.5	0	0	1	-1.25	0	-1	0	48	
x2	0	0	1	0	0	0	0	1	0	6	
S3	0	1	0	0	0	0	1	0	0	9	

0

0

-0.083

0.083

0 0.67

0 -0.67

1

0

2.3333

2.6667

0

1

0

0

(c) An Excel spreadsheet can be set up to solve the problem as

-0.8333

0.83333

a.	A	В	C	D	E	F
1	<u></u>	regular	premium	supreme	total	constraint
2	amount	0	0	0		
3	material	7	11	15	0	154
4	time	10	8	12	0	80
5	reg stor	1	0	0	0	9
6	prem stor	0	1	0	0	6
7	sup stor	0	0	1	0	5
8	profit	150	175	250	0	

The formulas in column E are

0

0

S5

хЗ

а. 	A	B	C	D	E	F
1	Ê	regular	premium	supreme	total	constraint
2	amount	0	Ó	0		
3	material	7	11	15	=B3*B\$2+C3*C\$2+D3*D\$2	154
4	time	10	8	12	=B4*B\$2+C4*C\$2+D4*D\$2	80
5	reg stor	1	0	0	=B5*B\$2+C5*C\$2+D5*D\$2	9
6	prem stor	0	1	0	=B6*B\$2+C6*C\$2+D6*D\$2	6
7	sup stor	0	0	1	=B7*B\$2+C7*C\$2+D7*D\$2	5
8	profit	150	175	250	=B8*B\$2+C8*C\$2+D8*D\$2	

The Solver can be called and set up as

Set Target Cell:	Solve
iqual To: <u>Max</u> Min <u>V</u> alue of: 0 By Changing Cells:	Close
\$B\$2:\$D\$2	Guess
iubject to the Constraints:	Options
Subject to the Constraints: \$B\$2 >= 0	Add
Subject to the Constraints: $B_2 >= 0$ $C_2 >= 0$ $C_2 = 0$	Add Options
5ubject to the Constraints: \$B\$2 >= 0 \$C\$2 >= 0 \$D\$2 >= 0 \$E\$3 <= \$F\$3	Add Qptions
Subject to the Constraints: \$B\$2 >= 0 \$C\$2 >= 0 \$D\$2 >= 0 \$D\$2 >= 0 \$E\$3 <= \$F\$3 \$E\$4 <= \$F\$4	Add Qptions

The resulting solution is

1	A	B	C	D	E	F
1	-	regular	premium	supreme	total	constraint
2	amount	0	6	2.666667		
3	material	7	11	15	106	154
4	time	10	8	12	80	80
5	reg stor	1	0	0	0	9
6	prem stor	0	1	0	6	6
7	sup stor	0	0	1	2.666667	5
8	profit	150	175	250	1716.667	

In addition, a sensitivity report can be generated as

	A B	C	D	E	F	G	Н
1	Microso	ft Excel 11.0 Sen	sitivity Report		it di		n († 17) 10
2	Worksh	eet: [Book1]Shee	t1				
3	Report	Created: 6/24/200	5 2:41:55 PM				
4							
5	3						
6	Adjustab	ole Cells					
7	a contraction		Final	Reduced	Objective	Allowable	Allowable
8	Cell	Name	Value	Cost	Coefficient	Increase	Decrease
9	\$B\$2	amount regular	0	-58.33333333	150	58.33333333	1E+30
10	\$C\$2	amount premium	6	0	175	1E+30	8.333333334
11	\$D\$2	amount supreme	2.666666667	0	250	12.5	70
12							
13	Constrai	nts					
14			Final	Shadow	Constraint	Allowable	Allowable
15	Cell	Name	Value	Price	R.H. Side	Increase	Decrease
16	\$E\$3	material total	106	0	154	1E+30	48
17	\$E\$4	time total	80	20.83333333	80	28	32
18	\$E\$5	reg stor total	0	0	9	1E+30	9
19	\$E\$6	prem stor total	6	8.333333334	6	4	3.5
20	\$E\$7	sup stor total	2.666666667	0	5	1E+30	2.333333333

(d) The high shadow price for time from the sensitivity analysis from (c) suggests that increasing time will result in the best increase in profit.

15.3 (a) To solve graphically, the constraints can be reformulated as the following straight lines

y = 6.22222 - 0.53333xy = 7.2727 - 0.90909xy = 9 - 2.5x

The objective function can be reformulated as

y = 0.8P - 1.4x

The constraint lines can be plotted on the *x*-*y* plane to define the feasible space. Then the objective function line can be superimposed for various values of *P* until it reaches the boundary. The result is $P \cong 9.30791$ with $x \cong 1.4$ and $y \cong 5.5$.

(b) The simplex tableau for the problem can be set up and solved as

Basis	Р	X	У	S ₁	S ₂	S ₃	Solution	Intercept
Р	1	-1.75	-1.25	0	0	0	0	
S ₁	0	1.2	2.25	1	0	0	14	11.66667
S ₂	0	1	1.1	0	1	0	8	8
S ₃	0	2.5	1	0	0	1	9	3.6
Basis	Р	X	У	S₁	S ₂	S ₃	Solution	Intercept
Р	1	0	-0.55	0	0	0.7	6.3	
S ₁	0	0	1.77	1	0	-0.48	9.68	5.468927
S ₂	0	0	0.7	0	1	-0.4	4.4	6.285714
X	0	1	0.4	0	0	0.4	3.6	9
Basis	Р	X	У	S₁	S ₂	S₃	Solution	Intercept
Р	1	0	0	0.310734	0	0.550847	9.30791	
У	0	0	1	0.564972	0	-0.27119	5.468927	
S ₂	0	0	0	-0.39548	1	-0.21017	0.571751	
x	0	1	0	-0.22599	0	0.508475	1.412429	

(c) An Excel spreadsheet can be set up to solve the problem as

	A	B	C	D	E
1		х	у	total	constraint
2	amount	0	Ó		
3	constraint 1	1.2	2.25	0	14
4	constraint 2	1	1.1	0	8
5	constraint 3	2.5	1	0	9
6	profit	1.75	1.25	0	

The formulas in column D are

1	A	B	C	D	E
1		х	у	total	constraint
2	amount	0	0		
3	constraint 1	1.2	2.25	=B3*B\$2+C3*C\$2	14
4	constraint 2	1	1.1	=B4*B\$2+C4*C\$2	8
5	constraint 3	2.5	1	=B5*B\$2+C5*C\$2	9
6	profit	1.75	1.25	=B6*B\$2+C6*C\$2	

The Solver can be called and set up as

S <u>e</u> t Target Cell: #D\$6	Solve
Equal To: Max Min Value of: 0 <u>By</u> Changing Cells:	Close
\$B\$2:\$C\$2 Success)
Subject to the Constraints:	Options
Subject to the Constraints: \$D\$3 <= \$E\$3 \$D\$4 <= \$E\$4 ▲ ▲	
Subject to the Constraints: \$D\$3 <= \$E\$3	
Subject to the Constraints: \$D\$3 <= \$E\$3	Options

The resulting solution is

	A	В	C	D	E
1		Х	у	total	constraint
2	amount	1.412429	5.468927		
3	constraint 1	1.2	2.25	14	14
4	constraint 2	1	1.1	7.428249	8
5	constraint 3	2.5	1	9	9
6	profit	1.75	1.25	9.30791	

15.4 (a) To solve graphically, the constraints can be reformulated as the following straight lines

y = 20 - 2.5xy = 10 - 10xy = 8 - 0.5x

The objective function can be reformulated as

y = 0.125P - 0.75x

The constraint lines can be plotted on the *x*-*y* plane to define the feasible space. Then the objective function line can be superimposed for various values of *P* until it reaches the boundary. The result is $P \cong 72$ with $x \cong 4$ and $y \cong 6$.

(b) The simplex tableau for the problem can be set up and solved as

Basis	Р	X	у	S ₁	S ₂	S₃	Solution	Intercept
Р	1	-6	-8	0	0	0	0	
S ₁	0	5	2	1	0	0	40	20
S ₂	0	6	6	0	1	0	60	10
S ₃	0	2	4	0	0	1	32	8
Basis	Р	x	У	S₁	S ₂	S ₃	Solution	Intercept
Р	1	-2	0	0	0	2	64	
S ₁	0	4	0	1	0	-0.5	24	6
S ₂	0	3	0	0	1	-1.5	12	4
У	0	0.5	1	0	0	0.25	8	16
Basis	Р	X	у	S₁	S ₂	S ₃	Solution	Intercept
Р	1	0	0	0	0.666667	1	72	
S ₁	0	0	0	1	-1.33333	1.5	8	
х	0	1	0	0	0.333333	-0.5	4	
У	0	0	1	0	-0.16667	0.5	6	

(c) An Excel spreadsheet can be set up to solve the problem as

1	A	B	C	D	E
1		х	У	total	constraint
2	amount	0	Ó		
3	constraint 1	5	2	0	40
4	constraint 2	6	6	0	60
5	constraint 3	2	4	0	32
6	profit	6	8	0	

The formulas in column D are

	A	В	C	D	E
1	15	х	У	total	constraint
2	amount	0	0		
3	constraint 1	5	2	=B3*B\$2+C3*C\$2	40
4	constraint 2	6	6	=B4*B\$2+C4*C\$2	60
5	constraint 3	2	4	=B5*B\$2+C5*C\$2	32
6	profit	6	8	=B6*B\$2+C6*C\$2	

Solver Parameters	
Set Target Cell: Equal To: Max Min Value of: By Changing Cells:	Solve Close
\$B\$2:\$C\$2 Guess Subject to the Constraints:	Options
\$D\$3 <= \$E\$3 \$D\$4 <= \$E\$4 \$D\$5 <= \$E\$5 <u>A</u> dd <u>C</u> hange <u>D</u> elete	Reset All

The resulting solution is

1	A	В	C	D	E
1		х	у	total	constraint
2	amount	4	6		
3	constraint 1	5	2	32	40
4	constraint 2	6	6	60	60
5	constraint 3	2	4	32	32
6	profit	6	8	72	

15.5 An Excel spreadsheet can be set up to solve the problem as

	A	В
1	X	0
2	У	0
3	f(x,y)	0
4	Constraint:	
5	2x+γ=	0

The formulas are

	A	В
1	x	0
2	У	0
3	f(x,y)	=1.2*B1+2*B2-B2^3
4	Constraint:	
5	2x+y=	=2*B1+B2

The Solver can be called and set up as

olver Parameters	
Set Target Cell: \$8\$3	<u>S</u> olve
Equal To: <u>Max</u> <u>Min</u> <u>Value of:</u> By Changing Cells:	Close
\$B\$1:\$B\$2	
Subject to the Constraints:	Options
\$B\$5 <= 2	
	<u>R</u> eset All
Delete	Help

The resulting solution is

1	A	В
1	X	0.658435
2	У	0.68313
3	f(x,y)	1.837588
4	Constraint:	
5	2x+y=	2

15.6 An Excel spreadsheet can be set up to solve the problem as

	A	В
1	x	0
2	у	0
3	f(x,y)	0
4	Constraints	
5	x^2+y^2	0
6	x+2γ	0

The formulas are

	A	В	2
1	x	0	Ī
2	y .	0	
3	f(x,y)	=15*B1+15*B2	
4	Constraints:		
5	x^2+y^2	=B1^2+B2^2	
6	x+2y	=B1+2*B2	

The Solver can be called and set up as

Solver Parameters	
Set Target Cell:	Solve
Equal To: Max Min Value of: 0 By Changing Cells:	Close
\$B\$1:\$B\$2	
Subject to the Constraints:	Options
\$B\$5 <= 1 \$B\$6 <= 2.1	
	<u>R</u> eset All

The resulting solution is

	A	В
1	х	0.727247
2	У	0.686377
3	f(x,y)	21.20435
4	Constraint	ts:
5	x^2+y^2	1.000001
6	x+2y	2.1

15.7 (a) The function and the constraint can be plotted and as shown indicate a solution of x = 2 and y = 1.

(b) An Excel spreadsheet can be set up to solve the problem as

	A	В	С	D
1	x	0		
2	y	0		
3	Minimize	124		
4	f(x,y)	18		
5	Subject to			
6	x+2y =	0	=	4

The formulas are

	A	В	С	D
1	x	0		
2	Y	0		
3	Minimize	1		
4	f(x,y)	=(B1-3)^2+(B2-3)^2		
5	Subject to			
6	x+2y =	=B1+2*B2		4

Solver Parameters	
Set Target Cell: Equal To: <u>Max</u> Min <u>V</u> alue of: 0 By Changing Cells:	Solve Close
\$B\$1:\$B\$2 Guess Subject to the Constraints: \$B\$6 = \$D\$6	Options
	Reset All

The resulting solution is

2	A	B	С	D
1	x	2		-
2	У	1		
3	Minimize			
4	f(x,y)	5		
5	Subject to			
6	x+2y =	4	18 4	4

15.8 This problem can be solved with a variety of software tools.

Excel: An Excel spreadsheet can be set up to solve the problem as

9	A	В
1	x	0
2	у	0
3	Maximize	
4	f(x,y)	0

The formulas are

-	A	В	0
1	x	0	
2	Y	0	
3	Maximize		
4	f(x,y)	=2.25*B1*B2+1.75*B2-1.5*B1*2-2*B2*2	

5et Target Cell: 🚯 4 💽	Solve
Equal To: <u>Max</u> <u>Min</u> <u>Value of</u> : <u>0</u> By Changing Cells:	Close
\$B\$1:\$B\$2 Guess	
Subject to the Constraints:	Options
<u>Add</u>	
	Reset All

The resulting solution is

6	A	В
1	X	0.567568
2	У	0.756757
3	Maximize	
4	f(x,y)	0.662162

MATLAB: Set up an M-file to hold the negative of the function

function f=fxy(x)
f = -(2.25*x(1)*x(2)+1.75*x(2)-1.5*x(1)^2-2*x(2)^2);

Then, the MATLAB function fminsearch can be used to determine the maximum:

15.9 This problem can be solved with a variety of software tools.

Excel: An Excel spreadsheet can be set up to solve the problem as

1	A	В
1	X	0
2	у	0
3	Maximize	
4	f(x,y)	0

The formulas are

Ê.	A	В
1	x	0 0
2	У	0
3	Maximize	
4	f(x,y)	=4*B1+2*B2+B1*2-2*B1*4+2*B1*B2-3*B2*2

Solver Parameters	
Set Target Cell: \$B\$4 5 Equal To: Max Min Value of: 0 By Changing Cells:	<u>S</u> olve Close
\$B\$1:\$B\$2 Guess Subject to the Constraints: Add	Options
Change Delete	Reset All

The resulting solution is

2	A	В
1	X	0.96758
2	Y	0.65586
3	Maximize	
4	f(x,y)	4.344006

MATLAB: Set up an M-file to hold the negative of the function

```
function f=fxy(x)
f = -(4*x(1)+2*x(2)+x(1)^2-2*x(1)^4+2*x(1)*x(2)-3*x(2)^2);
```

Then, the MATLAB function fminsearch can be used to determine the maximum:

15.10 (a) This problem can be solved graphically by using a software package to generate a contour plot of the function. For example, the following plot can be developed with Excel. As can be seen, a minimum occurs at approximately x = 3.3 and y = -0.7.

(b) We can use a software package like MATLAB to determine the minimum by first setting up an M-file to hold the function as

function f=fxy(x) f = $-8 \times (1) \times (1)^{2+12} \times (2) + 4 \times (2)^{2-2} \times (1) \times (2)$;

Then, the MATLAB function fminsearch can be used to determine the location of the minimum as:

```
>> x=fminsearch(@fxy,[0,0])
```

x = 3.3333 -0.6666

Thus, x = 3.3333 and y = -0.6666.

(c) A software package like MATLAB can then be used to evaluate the function value at the minimum as in

```
>> fopt=fxy(x)
fopt =
    -17.3333
```

(d) We can verify that this is a minimum as follows

Therefore the result is a minimum because |H| > 0 and $\partial^2 f / \partial x^2 > 0$.

15.11 The volume of a right circular cone can be computed as

$$V = \frac{\pi r^2 h}{3}$$

where r = the radius and h = the height. The area of the cone's side is computed as

$$A_s = \pi rs$$

where s = the length of the side which can be computed as

$$s = \sqrt{r^2 + h^2}$$

The area of the circular cover is computed as

$$A_c = \pi r^2$$

(a) Therefore, the optimization problem with no side slope constraint can be formulated as

minimize $C = 100V + 50A_s + 25A_c$

subject to

 $V \ge 50$

A solution can be generated in a number of different ways. For example, using Excel

	A	В	C	D	E
1	Decision varia	ibles:			
2	rad	1			
3	h	1			
4	1				
5	Computed val	ues:			
6	S	1.414213562			
7	slope	0.785398163	radians	45	degrees
8	Side area	4.442882938			
9	Lid area	3.141592654			
10					
11	Constraints:				
12	Volume	1.047197551	>=	50	
13					
14					
15	Objective fund	tion:			
16	Area cost	\$ 50.00			
17	Volume cost	\$ 100.00			
18	Lid cost	\$ 25.00			
19	0				
20	Total cost	\$ 405.40			

The underlying formulas can be displayed as

	A	В	C	D	E
1	Decision variables:		-		
2	rad	1			
3	h	1			
4					
5	Computed values:				
6	s	=SQRT(B2^2+B3^2)			
7	slope	=ATAN(B3/B2)	radians	=B7*180/PI()	degrees
8	Side area	=PI()*B2*B6			-
9	Lid area	=PI0*B2^2			
10		P			
11	Constraints:				
12	Volume	=PI()*B2^2*B3/3	>=	50	
13					
14					
15	Objective function:				
16	Area cost	50			
17	Volume cost	100			
18	Lid cost	25			
19					
20	Total cost	=B16*B8+B17*B12+B18*B9			

The Solver can be implemented as

Solver Parameters	
Set Target Cell: #8#20 Image: Cell Set	<u>S</u> olve Close
\$B\$2:\$B\$3 Guess Subject to the Constraints: \$B\$12 >= \$P\$12	Options
Change	Reset All

The result is

	A	В	C	D	E
1	Decision varia	bles:			
2	rad	2.844611637			
3	h	5.900589766		1 1	
4					
5	Computed val	ues:			
6	S	6.550478986			
7	slope	1.121579609	radians	64.26178	degrees
8	Side area	58.5390827			
9	Lid area	25.4211877		1	
10					
11	Constraints:			1	
12	Volume	50	>=	50	
13					
14					
15	Objective func	tion:			
16	Area cost	\$ 50.00			
17	Volume cost	\$ 100.00			
18	Lid cost	\$ 25.00			
19				1 1	
20	Total cost	\$ 8,562.48		1	

(b) The optimization problem with the side slope constraint can be formulated as

minimize $C = 100V + 50A_s + 25A_c$

subject to

 $\frac{V \ge 50}{\frac{h}{r} \le 1}$

A solution can be generated in a number of different ways. For example, using Excel

	A	В	C	D	E
1	Decision varia	bles:	-		
2	rad	1			
3	h	1	1		
4					
5	Computed val	Jes:			
6	S	1.414213562			
7	slope	0.785398163	radians	45	degrees
8	Side area	4.442882938			
9	Lid area	3.141592654			
10					
11	Constraints:				
12	Volume	1.047197551	>=	50	
13	slope	45	<=	45	
14					
15	Objective func	tion:			
16	Area cost	\$ 50.00			
17	Volume cost	\$ 100.00			
18	Lid cost	\$ 25.00			
19		1.025			
20	Total cost	\$ 405.40			

The underlying formulas can be displayed as

	A	В	C	D	E
1	Decision variables:				
2	rad	1			
3	h	1			
4					
5	Computed values:				
6	S	=SQRT(B2^2+B3^2)			
7	slope	=ATAN(B3/B2)	radians	=B7*180/PI()	degrees
8	Side area	=PI()*B2*B6			
9	Lid area	=PI()*B2^2			
10					
11	Constraints:				
12	Volume	=PI()*B2^2*B3/3	>=	50	
13	slope	=D7	<=	45	
14		3			
15	Objective function:				
16	Area cost	50			
17	Volume cost	100			
18	Lid cost	25			
19					
20	Total cost	=B16*B8+B17*B12+B18*B9			

The Solver can be implemented as

Set Target Cell: BS20		<u>S</u> olve
Equal To: O Max O Min O Value of: By Changing Cells:	0	Close
\$B\$2:\$B\$3	Guess	
Subject to the Constraints:		Options
\$B\$12 >= \$D\$12 \$B\$13 <= \$D\$13	Add	
		Reset All
~	Delete	

The result is

	A	B	C	D	E
1	Decision varia	bles:	1		
2	rad	3.627831676			
3	h	3.627831676	1		
4					
5	Computed value	Jes:			
6	S	5.130528758			
7	slope	0.785398163	radians	45	degrees
8	Side area	58.47350507			
9	Lid area	41.34701196			
10	20 10000				
11	Constraints:	1	1		
12	Volume	49.9999999	>=	50	
13	slope	45	<=	45	
14					
15	Objective func	tion:			
16	Area cost	\$ 50.00	1		
17	Volume cost	\$ 100.00			
18	Lid cost	\$ 25.00			
19			1		
20	Total cost	\$ 8,957.35			

15.12 Assuming that the amounts of the two-door and four-door models are x_1 and x_2 , respectively, the linear programming problem can be formulated as

Maximize: $z = 13,500x_1 + 15,000x_2$

subject to

 $\begin{array}{l} 15x_1 + 20x_2 \leq 8,000 \\ 700x_1 + 500x_2 \leq 240,000 \\ x_1 \leq 400 \\ x_2 \leq 350 \\ x_1, x_2 \geq 0 \end{array}$

(a) To solve graphically, the constraints can be reformulated as the following straight lines

 $x_2 = 400 - 0.75x_1$

 $x_2 = 480 - 1.4x_1$ $x_1 = 400$ $x_2 = 350$

The objective function can be reformulated as

 $x_2 = (1/15,000)z - 0.9x_1$

The constraint lines can be plotted on the x_1 - x_2 plane to define the feasible space. Then the objective function line can be superimposed for various values of z until it reaches the boundary. The result is $z \cong$ \$6,276,923 with $x_1 \cong 123.08$ and $x_2 \cong 307.69$.

(b) The solution can be generated with Excel as in the following worksheet

	A	В	C	D	E
1		x1	х2	total	constraint
2	amount	0	0		
3	time	15	20	0	8000
4	demand	700	500	0	240000
5	Storage	1		0	400
6	Storage		1	0	350
7	profit	13500	15000	0	

1	A	B	C	D	E
1	1	x1	x2	total	constraint
2	amount	122	308		
3	time	15	20	=B3*B\$2+C3*C\$2	8000
4	demand	700	500	=B4*B\$2+C4*C\$2	240000
5	Storage	1		=B5*B\$2+C5*C\$2	400
6	Storage		1	=B6*B\$2+C6*C\$2	350
7	profit	13500	15000	=B7*B\$2+C7*C\$2	

The underlying formulas can be displayed as

The Solver can be implemented as

Set Target Cell: \$D\$7	Solve
Equal To: ③ <u>M</u> ax 〇 Mi <u>n</u> 〇 <u>V</u> alue of: By Changing Cells:	0 Close
\$B\$2:\$C\$2	Guess
Andreas and the second se	
Subject to the Constraints:	Options
Subject to the Constraints: \$B\$2 = integer	<u>A</u> dd
Subject to the Constraints: \$B\$2 = integer \$C\$2 = integer \$D\$3 <= \$E\$3	Add Options
Subject to the Constraints: \$B\$2 = integer \$C\$2 = integer \$D\$3 <= \$E\$3 \$D\$4 <= \$E\$4 \$D\$4 <= \$E\$4	Add Qptions

Notice how, along with the other constraints, we have specified that the decision variables must be integers. The result of running Solver is

1	A	В	C	D	E
1		x1	x2	total	constraint
2	amount	122	308		
3	time	15	20	7990	8000
4	demand	700	500	239400	240000
5	Storage	1		122	400
6	Storage		1	308	350
7	profit	13500	15000	6267000	

Thus, because we have constrained the decision variables to be integers, the maximum profit is slightly smaller than that obtained graphically in part (a).

15.13 (a) First, we define the decision variables as

 x_1 = number of clubs produced x_2 = number of axes produced

The damages can be parameterized as

damage/club = 2(0.45) + 1(0.65) = 1.55 maim equivalents damage/axe = 2(0.70) + 1(0.35) = 1.75 maim equivalents

The linear programming problem can then be formulated as

maximize $Z = 1.55x_1 + 1.75x_2$

subject to

 $5.1x_1 + 3.2x_2 \le 240 \quad \text{(materials)} \\ 2.1x_1 + 4.3x_2 \le 200 \quad \text{(time)} \\ x_1, x_2 \ge 0 \quad \text{(positivity)} \end{cases}$

(b) and (c) To solve graphically, the constraints can be reformulated as the following straight lines

 $x_2 = 75 - 1.59375x_1$ $x_2 = 46.51163 - 0.488372x_1$

The objective function can be reformulated as

 $x_2 = (1/1.75)Z - 0.885714x_1$

The constraint lines can be plotted on the x_1 - x_2 plane to define the feasible space. Then the objective function line can be superimposed for various values of Z until it reaches the boundary. The result is $Z \cong 99.3$ with $x_1 \cong 25.8$ and $x_2 \cong 33.9$.

(d) The solution can be generated with Excel as in the following worksheet

	A	B	C	D	E
1	15 	club	axe	value	
2	kills	0.45	0.7	2	
3	maims	0.65	0.35	1	
4					
5	1	x1	x2	total	constraint
6	quantity	0	0		
7	materials	5.1	3.2	0	240
8	time	2.1	4.3	0	200
9	1				
10	damage	1.55	1.75	0	

The underlying formulas can be displayed as

1	A	В	C	D	E
1		club	axe	value	
2	kills	0.45	0.7	2	
3	maims	0.65	0.35	1	
4			1 200 000000.		
5		x1	x2	total	constraint
6	quantity	25	34		
7	materials	5.1	3.2	=B7*B6+C7*C6	240
8	time	2.1	4.3	=B8*B6+C8*C6	200
9					
10	damage	=D2*B2+D3*B3	=D2*C2+D3*C3	=B10*B6+C10*C6	

The Solver can be implemented as

Solver Parameters	
Set Target Cell: \$D\$10 Set Equal To: <u>Max</u> <u>Min</u> <u>V</u> alue of: <u>0</u> <u>0</u>	<u>S</u> olve Close
\$B\$6:\$C\$6 Guess Subject to the Constraints:	Options
\$B\$5 = integer Add \$C\$6 = integer Change \$D\$7 <= \$E\$7	Reset All

Notice how, along with the other constraints, we have specified that the decision variables must be integers. The result of running Solver is

	A	B	C	D	E
1	65 - E-	club	axe	value	
2	kills	0.45	0.7	2	
3	maims	0.65	0.35	1	
4				11	
5		x1	x2	total	constraint
6	quantity	25	34		
7	materials	5.1	3.2	236.3	240
8	time	2.1	4.3	198.7	200
9	-				
10	damage	1.55	1.75	98.25	

Thus, because we have constrained the decision variables to be integers, the maximum damage is slightly smaller than that obtained graphically in part (c).