CHAPTER 16

16.1 The area and volume can be computed as

$$
\begin{align*}
& A=\pi r^{2}+2 \pi r h \tag{1}\\
& V=\pi r^{2} h \tag{2}
\end{align*}
$$

An Excel spreadsheet can be set up to solve the problem as

	A	B
1	radius	1
2	height	1
3		
4	volume	3.141593
5	desired volume	0.5
6		
7	side area	6.283185
8	bottom area	3.141593
9	total area	9.424778

The formulas are

	A	B
1	radius	1
2	height	1
3		$=\mathrm{P} 10^{\star} \mathrm{B} 1^{\wedge} 2^{*} \mathrm{~B} 2$
4	volume	
5	desired volume	0.5
6		$=2^{\star} \mathrm{P} 10^{*} \mathrm{~B} 1^{*} \mathrm{~B} 2$
7	side area	$=\mathrm{Pl}^{*} \mathrm{~B} 1^{\wedge} 2$
8	bottom area	$=\mathrm{SUM}(\mathrm{B} 7: \mathrm{B})$
9	total area	

The Solver can be called and set up as

The resulting solution is

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

	A	B
1	radius	0.542187
2	height	0.541403
3		
4	volume	0.499999
5	desired volume	0.5
6		
7	side area	1.844378
8	bottom area	0.923525
9	total area	2.767902

Thus, the Solver says that the optimal cylindrical container is one where the radius equals the height. For the case of the desired $V=0.5 \mathrm{~m}^{3}$, the dimensions are $r=h=0.542 \mathrm{~m}$.

The general result of $r=h$ can be verified using calculus as follows. First, we can solve the volume equation for h as
$h=\frac{V}{\pi r^{2}}$
This can be substituted into the area equation to give
$A=\pi r^{2}+2 \pi r \frac{V}{\pi r^{2}}=\pi r^{2}+\frac{2 V}{r}$
We can differentiate this equation with respect to r to yield
$\frac{d A}{d r}=2 \pi r-\frac{2 V}{r^{2}}$
which can be set equal to zero and solved for
$r=\sqrt[3]{\frac{V}{\pi}}$
This result can then be substituted into Eq. 3 which can be solved for

$$
h=\sqrt[3]{\frac{V}{\pi}}
$$

Thus, we prove that the optimal container has $r=h=(V / \pi)^{1 / 3}$. For our desired volume of 0.5 m^{3}, this means that $r=h=(0.5 / \pi)^{1 / 3}=0.541926 \mathrm{~m}$, which confirms the result obtained numerically with the Excel Solver.
16.2 (a) The area and volume can be computed as

$$
\begin{equation*}
A=\pi r^{2}+\pi r \sqrt{r^{2}+h^{2}} \tag{1}
\end{equation*}
$$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$$
\begin{equation*}
V=\frac{\pi r^{2} h}{3} \tag{2}
\end{equation*}
$$

An Excel spreadsheet can be set up to solve the problem as

	A	B
1	radius	1
2	height	1
3		
4	volume	1.047198
5	desired volume	0.5
6		
7	top area	3.141593
8	side area	4.442883
9	total area	7.584476

The formulas are

	A	B
1	radius	1
2	height	1
3		$=\mathrm{Pl} 0^{*} \mathrm{~B} 1^{\wedge} 2^{\star} \mathrm{B} 2 / 3$
4	volume	
5	desired volume	0.5
6		$=\mathrm{Pl} 0^{*} \mathrm{~B} 1^{\wedge} 2$
7	top area	$=\mathrm{P} 0^{*} \mathrm{~B} 1^{*} \mathrm{SQRT}\left(\mathrm{B} 1^{\wedge} 2+\mathrm{B} 2^{\wedge} 2\right)$
8	side area	$=\mathrm{B} 7+\mathrm{B} 8$
9	total area	

The Solver can be called and set up as

The resulting solution is

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

	A	B
1	radius	0.552892
2	height	1.561923
3		
4	volume	0.5
5	desired volume	0.5
6		
7	top area	0.960353
8	side area	2.877962
9	total area	3.838315

(b) For this case, the area and volume can be computed as

$$
\begin{aligned}
& A=\pi r \sqrt{r^{2}+h^{2}} \\
& V=\frac{\pi r^{2} h}{3}
\end{aligned}
$$

An Excel spreadsheet can be set up to solve the problem in a similar fashion to part (a) with the result: $r=0.6964 \mathrm{~m}$ and $h=0.9844 \mathrm{~m}$.
16.3 This problem can be solved in a number of different ways. For example, using the golden section search, the result is

\boldsymbol{i}	$\boldsymbol{c}_{\boldsymbol{l}}$	$\boldsymbol{g}\left(\boldsymbol{c}_{\boldsymbol{l}}\right)$	\boldsymbol{c}_{2}	$\boldsymbol{g}\left(\boldsymbol{c}_{2}\right)$	$\boldsymbol{c}_{\mathbf{1}}$	$\boldsymbol{g}\left(\boldsymbol{c}_{1}\right)$	$\boldsymbol{c}_{\boldsymbol{u}}$	$\boldsymbol{g}\left(\boldsymbol{c}_{\boldsymbol{u}}\right)$	\boldsymbol{d}	$\boldsymbol{c}_{\text {opt }}$	$\boldsymbol{\varepsilon}_{\boldsymbol{a}}$
1	0.0000	0.0000	3.8197	0.2330	6.1803	0.1310	10.0000	0.0641	6.1803	3.8197	100.00%
2	0.0000	0.0000	2.3607	0.3350	3.8197	0.2330	6.1803	0.1310	3.8197	2.3607	100.00%
3	0.0000	0.0000	1.4590	0.3686	2.3607	0.3350	3.8197	0.2330	2.3607	1.4590	100.00%
4	0.0000	0.0000	0.9017	0.3174	1.4590	0.3686	2.3607	0.3350	1.4590	1.4590	61.80%
5	0.9017	0.3174	1.4590	0.3686	1.8034	0.3655	2.3607	0.3350	0.9017	1.4590	38.20%
6	0.9017	0.3174	1.2461	0.3593	1.4590	0.3686	1.8034	0.3655	0.5573	1.4590	23.61%
7	1.2461	0.3593	1.4590	0.3686	1.5905	0.3696	1.8034	0.3655	0.3444	1.5905	13.38%
8	1.4590	0.3686	1.5905	0.3696	1.6718	0.3688	1.8034	0.3655	0.2129	1.5905	8.27%
9	1.4590	0.3686	1.5403	0.3696	1.5905	0.3696	1.6718	0.3688	0.1316	1.5905	5.11%
10	1.5403	0.3696	1.5905	0.3696	1.6216	0.3694	1.6718	0.3688	0.0813	1.5905	3.16%
11	1.5403	0.3696	1.5713	0.3696	1.5905	0.3696	1.6216	0.3694	0.0502	1.5713	1.98%
12	1.5403	0.3696	1.5595	0.3696	1.5713	0.3696	1.5905	0.3696	0.0311	1.5713	1.22%
13	1.5595	0.3696	1.5713	0.3696	1.5787	0.3696	1.5905	0.3696	0.0192	1.5713	0.75%

Thus, after 13 iterations, the method is converging on the true value of $c=1.5679$ which corresponds to a maximum specific growth rate of $g=0.36963$.
16.4 (a) The LP formulation is given by

Maximize $C=30 X+30 Y+35 Z \quad$ \{Maximize profit $\}$
subject to

$$
\begin{array}{ll}
6 X+4 Y+12 Z \leq 2500 & \text { \{Raw chemical constraint }\} \\
0.05 X+0.1 Y+0.2 Z \leq 55 & \{\text { Time constraint }\}
\end{array}
$$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
$X+Y+Z \leq 450$
$X, Y, Z \geq 0$
\{Storage constraint \}
\{Positivity constraints \}
(b) The simplex tableau for the problem can be set up and solved as

Basis	C	X	Y	Z	S 1	S 2	S3	Solution	Intercept
P	1	-30	-30	-35	0	0	0	0	
S1	0	6	4	12	1	0	0	2500	208.3333
S2	0	0.05	0.1	0.2	0	1	0	55	275
S3	0	1	1	1	0	0	1	450	450
Basis	C	X	Y	Z	S 1	S2	S3	Solution	Intercept
P	1	-12.5	-18.3333	0	2.91667	0	0	7291.667	
Z	0	0.5	0.33333	1	0.08333	0	0	208.3333	625
S2	0	-0.05	0.03333	0	-0.0167	1	0	13.33333	400
S3	0	0.5	0.66667	0	-0.0833	0	1	241.6667	362.5
Basis	C	X	Y	Z	S 1	S 2	S3	Solution	Intercept
P	1	1.25	0	0	0.625	0	27.5	13937.5	
Z	0	0.25	0	1	0.125	0	-0.5	87.5	700
S2	0	-0.075	0	0	-0.0125	1	-0.05	1.25	-100
Y	0	0.75	1	0	-0.125	0	1.5	362.5	-2900

(c) An Excel spreadsheet can be set up to solve the problem as

	A	B	C	D	E	F
1		Product 1	Product 2	Product 3	Total	Constraint
2	amount	0	0	0		
3	material	6	4	12	0	2500
4	time	0.05	0.1	0.2	0	55
5	storage	1	1	1	0	450
6	profit	30	30	35	0	

The formulas are

| | A | B | C | D | E | F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | | Product 1 | Product 2 | Product 3 | Total | Constraint |
| 2 | amount | 0 | 0 | 0 | | |
| 3 | material | 6 | 4 | 12 | $=\mathrm{B} 3^{*} \mathrm{~B} \$ 2+\mathrm{C} 3^{*} \mathrm{C} \$ 2+\mathrm{D} 3^{*} \mathrm{D} \$ 2$ | 2500 |
| 4 | time | 0.05 | 0.1 | 0.2 | $=\mathrm{B} 4^{*} \mathrm{~B} \$ 2+\mathrm{C} 4^{*} \mathrm{C} \$ 2+\mathrm{D} 4^{*} \mathrm{D} \$ 2$ | 55 |
| 5 | storage | 1 | 1 | 1 | $=\mathrm{B} 5^{*} \mathrm{~B} \$ 2+\mathrm{C} 5^{*} \mathrm{C} \$ 2+\mathrm{D} 5^{*} \mathrm{D} \$ 2$ | 450 |
| 6 | profit | 30 | 30 | 35 | $=\mathrm{B} 6^{*} \mathrm{~B} \$ 2+\mathrm{C} 6^{*} \mathrm{C} \$ 2+\mathrm{D} 6^{*} \mathrm{D} \$ 2$ | |

The Solver can be called and set up as

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

The resulting solution is

	A	B	C	D	E	F
1		Product 1	Product 2	Product 3	Total	Constraint
2	amount	0	362.5	87.5		
3	material	6	4	12	2500	2500
4	time	0.05	0.1	0.2	53.75	55
5	storage	1	1	1	450	450
6	profit	30	30	35	13937.5	

In addition, a sensitivity report can be generated as

(d) The high shadow price for storage from the sensitivity analysis from (c) suggests that increasing storage will result in the best increase in profit.
16.5 An LP formulation for this problem can be set up as

$$
\text { Maximize } P=2000 Z_{1}-75 Z_{2}+250 Z_{3}-300 W \quad\{\text { Maximize profit }\}
$$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
subject to

$$
\begin{array}{ll}
Z_{1}+Z_{2} \leq 7500 & \{X \text { material constraint }\} \\
2.5 Z_{1}+Z_{3} \leq 12,500 & \{Y \text { material constraint }\} \\
Z_{1}-Z_{2}-Z_{3}-W=0 & \{\text { Waste constraint }\}
\end{array}
$$

An Excel spreadsheet can be set up to solve the problem as

	A	B		C		D		E	

The formulas are

	A	B	C	D	E	F	G
1		Z1	Z2	Z3	W	total	constraint
2	amount	0	0	0	0		
3	amount X	1	1	0	0	$=\mathrm{B} 3^{*} \mathrm{~B} \$ 2+\mathrm{C} 3^{*} \mathrm{C}$ \$2+D3*D\$2+E3*E\$2	7500
4	amount Y	2.5	0	1	0	$=\mathrm{B} 4^{*} \mathrm{~B}$ \$2+C4*${ }^{*}$ \$ $2+\mathrm{D} 4^{*} \mathrm{D}$ \$2+E4*E 22	12500
5	amount W	1	-1	-1	-1	$=\mathrm{B} 5^{*} \mathrm{~B} \$ 2+\mathrm{C} 5^{*} \mathrm{C} \$ 2+\mathrm{D} 5^{*} \mathrm{D}$ \$ $2+\mathrm{E} 5^{*} \mathrm{E}$ \$ 2	
6	profit	2000	-75	250	-300	$=B 6 * B \$ 2+C 6^{*} \mathrm{C} \$ 2+\mathrm{D} 6^{*} \mathrm{D}$ \$ $2+E 6^{*} \mathrm{E}$ \$ 2	

The Solver can be called and set up as

The resulting solution is

	A	B	C	D	E	F	G
1		Z1	Z2	Z3	W	total	constraint
2	amount	5000	2500	0	2500		
3	amount X	1	1	0	0	7500	7500
4	amount Y	2.5	0	1	0	12500	12500
5	amount W	1	-1	-1	-1	0	
6	profit	2000	-75	250	-300	9062500	

This is an interesting result which might seem counterintuitive at first. Notice that we create some of the unprofitable Z_{2} while producing none of the profitable Z_{3}. This occurred because

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
we used up all of Y in producing the highly profitable Z_{1}. Thus, there was none left to produce Z_{3}.
16.6 Substitute $x_{B}=1-x_{T}$ into the pressure equation,

$$
\left(1-x_{T}\right) P_{s a t_{B}}+x_{T} P_{s a t_{T}}=P
$$

and solve for x_{T},

$$
\begin{equation*}
x_{T}=\frac{P-P_{s t_{B}}}{P_{s a t_{T}}-P_{s t_{B}}} \tag{1}
\end{equation*}
$$

where the partial pressures are computed as

$$
\begin{aligned}
& P_{\text {sat }}=10^{\left(6.905-\frac{1211}{T+221}\right)} \\
& P_{\text {sat }}=10^{\left(6.953-\frac{1344}{T+219}\right)}
\end{aligned}
$$

The solution then consists of maximizing Eq. 1 by varying T subject to the constraint that $0 \leq$ $x_{T} \leq 1$. The Excel Solver can be used to obtain the solution. Here is how the worksheet can be set up:

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

The result is $T=112.8592$ as shown below:

16.7 This is a straightforward problem of varying x_{A} in order to minimize
$f\left(x_{A}\right)=\left(\frac{1}{\left(1-x_{A}\right)^{2}}\right)^{0.6}+6\left(\frac{1}{x_{A}}\right)^{0.6}$
First, the function can be plotted versus x_{A}

The result indicates a minimum between 0.5 and 0.6 . Using golden section search or a package like Excel or MATLAB yields a minimum of 0.587683 .
16.8 This is a case of constrained nonlinear optimization. The conversion factors range between 0 and 1 . In addition, the cost function can not be evaluated for certain combinations of $X_{A 1}$ and $X_{A 2}$. The problem is the second term,
$\left(\frac{1-\frac{x_{A 1}}{x_{A 2}}}{\left(1-x_{A 2}\right)^{2}}\right)^{0.6}$
If $x_{A 1}>x_{A 2}$, the numerator will be negative and the term cannot be evaluated.
Excel Solver can be used to solve the problem:

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

The result is

	A	B
1	XA1	0.368949
2	XA2	0.627265
3		
4	Cost	11.12039

16.9 This problem can be set up on Excel and the answer generated with Solver. Note that we have named the cells with the labels in the adjacent left columns.

The solution is

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

	A	B	C	D
1	Prob. 16.9			
2				
3	K	2		
4	B0	100		
5	CA	-1		
6	CC	10		
7				
8	AD	208.085		
9	C	99.41872		
10				
11	A	9.247574	<-----------	$=\mathrm{AD}-2^{*} \mathrm{C}_{-}$
12	B	0.581276	<-----------	= BO-C
13				
14	Kcalc	2	<-----------	$=C . /\left(A^{*} 2^{*} \mathrm{~B}^{\prime}\right)$
15				
16	Profit	786.1022	<-----------	$=C A^{*} A D+C C^{*} C^{2}$

16.10 The problem can be set up in Excel Solver. Note that we have named the cells with the labels in the adjacent left columns.

The solution is

15	Flow1	$357143 \mathrm{~L} / \mathrm{d}$
16	Flow2	$142857 \mathrm{~L} / \mathrm{d}$
17	Flow3	$500000 \mathrm{~L} / \mathrm{d}$
18		
19	Flowt	$1000000 \mathrm{~L} / \mathrm{d}$
20		
21	Flowr	1000000
22		
23	ConcBulk	100.0000001
24	mg / L	
25	Concr	
26		100
27	Total cost	$\$ 9 / \mathrm{L}$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
16.11 Here is a diagram for this problem:

The following formulas can be developed:

$$
\begin{align*}
& \theta=\tan ^{-1} \frac{1}{s} \tag{1}\\
& P=2 d \sqrt{1+s^{2}} \tag{2}\\
& A=s d^{2} \tag{3}
\end{align*}
$$

Then the following Excel worksheet and Solver application can be set up:

	A	B	C	D	E	F	G	H	I	J	K		
1	s	0.5			Solver Parameters								
2	d	5											
3											Solve		
4	A	12.5	<-----------	$=\mathrm{B} 1^{*} \mathrm{~B} 2^{\wedge} 2$					0				
5	Agoal	50							Close				
6													
7	P	11.18034	<----------	$=2^{*} \operatorname{SQRT}\left(1+\mathrm{B} 1^{\wedge} 2\right)^{*} \mathrm{~B} 2$	\$B\$1:\$B\$2						Guess		
8					Subject to the Constraints:								
9	angle (radians)	1.107149	<-----------	=ATAN(1/B1)							Options		
10	angle (degrees)	63.43495	<-----------	= B9*180/P10	$\$ \mathrm{~B} \$ 4=\$ \mathrm{~B} \$ 5$				Add				
11									Change				
12											Reset All		
13									Delete				
14											Help		
15													

Our goal is to minimize the wetted perimeter by varying the side slope and the depth. We apply the constraint that the computed area must equal the desired area. The result is

	A	B	C	D
1	s	1.000088		
2	d	7.070756		
3				
4	A	50	<-----------	= B1*B2 ${ }^{\text {2 }}$
5	Agoal	50		
6				
7	P	20	<----------	$=2^{*} \operatorname{SQRT}\left(1+\mathrm{B} 1^{\wedge} 2\right)^{*} \mathrm{~B} 2$
8				
9	angle (radians)	0.785354	<-----------	=ATAN(1/B1)
10	angle (degrees)	44.99747	<-----------	= B9*180/P10

Thus, this specific application indicates that a 45° angle yields the minimum wetted perimeter.

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

The verification that this result is universal can be attained inductively or deductively. The inductive approach involves trying several different desired areas in conjunction with our solver solution. As long as the desired area is greater than 0 , the result for the optimal design will be 45°.

The deductive verification involves calculus. First, Eq. 3 can be solved for d and the result substituted into Eq. 2 to give

$$
\begin{equation*}
P=2 \sqrt{A\left(s+\frac{1}{s}\right)} \tag{4}
\end{equation*}
$$

The minimum wetted perimeter should occur when the derivative of the perimeter with respect to s flattens out. That is, the slope is zero. Setting the derivative of Eq. 4 to zero yields,

$$
\begin{equation*}
\frac{d P}{d s}=\frac{1-\frac{1}{s^{2}}}{\sqrt{s+\frac{1}{s}}}=0 \tag{5}
\end{equation*}
$$

We can see that the derivative is zero if $s=1$. According to Eq. 1, this corresponds to $\theta=45^{\circ}$. Thus, the result obtained numerically is shown to be universal.
16.12 Here is a diagram for this problem:

The following formulas can be developed:

$$
\begin{align*}
& \theta=\tan ^{-1} \frac{1}{s} \tag{1}\\
& P=b+2 d \sqrt{1+s^{2}} \tag{2}\\
& A=(b+s d) d \tag{3}
\end{align*}
$$

Then the following Excel worksheet and Solver application can be set up:

Our goal is to minimize the wetted perimeter by varying the depth, side slope and bottom width. We apply the constraint that the computed area must equal the desired area. The result is

	A	B	C	D
1	b	8.773829		
2	s	0.577343		
3	d	7.598379		
4				
5	A	100	<-----------	$=\left(\mathrm{B} 1+\mathrm{B} 2^{*} \mathrm{~B} 3\right)^{*} \mathrm{~B} 3$
6	Agoal	100		
7				
8	P	26.32148	<----------	$=\mathrm{B} 1+2^{*} \mathrm{SQRT}\left(1+\mathrm{B} 2^{\text {n }}\right)^{*} \mathrm{~B} 3$
9				
10	angle (radians)	1.047203	<-----------	=ATAN(1/B2)
11	angle (degrees)	60.0003	<-----------	= B10*180/P10

Thus, this specific application indicates that a 60° angle yields the minimum wetted perimeter.

The verification of whether this result is universal can be attained inductively or deductively. The inductive approach involves trying several different desired areas in conjunction with our solver solution. As long as the desired area is greater than 0 , the result for the optimal design will be 60°.

The deductive verification involves calculus. First, we can solve Eq. 3 for b and substitute the result into Eq. 2 to give,

$$
\begin{equation*}
P=\frac{A}{d}+d\left(2 \sqrt{1+s^{2}}-s\right) \tag{4}
\end{equation*}
$$

If both A and d are constants and s is a variable, the condition for the minimum perimeter is $d P / d s=0$. Differentiating Eq. 4 with respect to s and setting the resulting equation to zero,

$$
\begin{equation*}
\frac{d P}{d s}=d\left(\frac{2 s}{\sqrt{1+s^{2}}}-1\right)=0 \tag{4}
\end{equation*}
$$

Therefore, we obtain $s=1 / \sqrt{3}$. Using Eq. 1, this corresponds to $\theta=60^{\circ}$.

16.13

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$$
\begin{aligned}
& A_{\text {ends }}=2 \pi r^{2} \\
& A_{\text {side }}=2 \pi r h \\
& A_{\text {total }}=A_{\text {ends }}+A_{\text {side }} \\
& V_{\text {computed }}=\pi r^{2} h \\
& \text { Cost }=F_{\text {ends }} A_{\text {ends }}+F_{\text {side }} A_{\text {side }}+F_{\text {coating }} A_{\text {coating }}
\end{aligned}
$$

Then the following Excel worksheet and Solver application can be set up:

which results in the following solution:

	A	B	C	D	E	F
1	Prob. 16.13					
2						
3	hside	3.282282	m	Vdesired	10	m3
4	dend	1.96955	m	Vcomputed	10	m3
5						
6	dend:hside	0.600055		Aend	6.093321721	m2
7				Aside	20.30920276	m2
8	rend	0.984775	m	Atotal	26.40252448	
9						
10	FEnd	\$ 200.00	\$/m2	CostEnd	\$ 1,218.66	
11	FSide	\$ 100.00	\$/m2	CostSide	\$ 2,030.92	
12	FCoat	\$ 50.00	\$/m2	CostCoat	\$ 1,320.13	
13						
14				CostTotal	\$ 4,569.71	

16.14 As shown below, Excel Solver gives: $x=0.5, y=0.8$ and $f_{\min }=-0.85$.

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

	A	B
1	x	0.5
2	y	0.8
3		
4	$f(x, y)$	-0.85

16.15 An Excel spreadsheet can be set up to solve the problem as

	A	B	C	D	E
1	Parameters				
2	c1	4		d1	1
3	c2	2		d2	10
4	H	275		t1	0.1
5	P	2000		t2	1
6	E	900000			
7	rho	0.0025			
8	sigmamax	550			
9					
10	Decision variables				
11	t	0.5			
12	d	10			
13					
14	Computed quantities			goals:	
15	W	10.79922			
16	1	196.8404			
17	sigma	127.324	$<$	550	
18	sigmab	1471.876			
19					
20	Objective function				
21	C	63.1969			

The formulas are

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

	A	B	C	D	E
1	Parameters				
2	c1	4		d1	1
3	c2	2		d2	10
4	H	275		t1	0.1
5	P	2000		t2	1
6	E	900000			
7	rho	0.0025			
8	sigmamax	550			
9					
10	Decision va				
11	t	0.5			
12	d	10			
13					
14	Computed c			goals:	
15	W	=P10*B12*B11*B4*B7			
16		$=\mathrm{P} 10 / 8^{*} \mathrm{~B} 12^{*} \mathrm{~B} 11^{*}\left(\mathrm{~B} 12^{\wedge} 2+\mathrm{B} 11^{\wedge} 2\right)$			
17	sigma	= $\mathrm{B} / \mathrm{/} / \mathrm{P} 10 / \mathrm{B} 12 / \mathrm{B} 11$	$<$	550	
18	sigmab	$=\mathrm{Pl} 0^{*} \mathrm{~B}^{*}{ }^{*} \mathrm{~B} 16 / \mathrm{B} 4^{\wedge} 2 / \mathrm{B} 12 / \mathrm{B} 11$			
19					
20	Objective fu				
21	C	$=\mathrm{B} 2^{*} \mathrm{~B} 15+\mathrm{B} 3^{*} \mathrm{~B} 12$			

The Solver can be called and set up as

The resulting solution is

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

	A	B	C	D	E
1	Parameters				
2	c1	4		d1	
3	c 2	2		d2	1
4	H	275	t 1	10	
5	P	2000	t 2	0.1	
6	E	900000			1
7	rho	0.0025			
8	sigmamax	550			
9					
10	Decision variables				
11	t	0.189207			
12	d	6.117589			
13					
14	Computed quantities		goals:		
15	W	2.5			
16	l	17.02759			
17	sigma	550	<		550
18	sigmab	550			
19					
20	Objective function				
21	C	22.23518			
22					

16.16 A plot of the function indicates a minimum at about $t=2.2$.

The Excel Solver can be used to determine that a minimum of $o=1.699$ occurs at a value of t $=2.2023$.

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
16.17 This problem can be solved graphically by using a software package to generate a contour plot of the function. For example, the following plot can be developed with Excel. As can be seen, a minimum occurs at approximately $x=1$ and $y=7$.

We can use a software package like Excel to determine the maximum precisely as $x=$ 1.034593 and $y=6.64868$.

16.18 (a) The problem consists of
$\min P=B+2 * H$
Subject to
$\frac{1}{n} B H\left(\frac{B H}{B+2 H}\right)^{2 / 3} S^{1 / 2}=Q$
The problem can be set up and solved with the Excel Solver as in

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

As can be seen, the result shows that the dimensions for the minimum wetted perimeter correspond to having the bottom width that is twice the length of each vertical side.
(b) Now we can redo the problem as a cost minimization:
$\min C=100 A_{\mathrm{c}}+50 P$

Subject to

$\frac{1}{n} B H\left(\frac{B H}{B+2 H}\right)^{2 / 3} S^{1 / 2}=Q$
The problem can be set up and solved with the Excel Solver as in

Very interestingly, the result is identical to that obtained when cost was not an issue!!!
(c) The constraint can be rewritten as

$$
\frac{(B H)^{5 / 2}}{B+2 H}=\left(\frac{n Q}{S^{1 / 2}}\right)^{3 / 2}=\mathrm{constant}
$$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
or

$$
B H=\text { constant } \times(B+2 H)^{2 / 5}
$$

Therefore, both A_{c} and P are minimized simultaneously. This is great, because the excavation costs will be proportional to the cross-sectional area. Hence, by having the bottom width twice the length of each vertical side, we will minimize both excavation and lining costs simultaneously!!!

16.19 Using Excel Solver,

	A	B	C	D	E	F	G	H	1	J	K	L	M
1	P	$3.00 \mathrm{E}+06$	N				Solver Parameters						
2	E	$2.00 \mathrm{E}+11$	N/m2										
3	Vgoal	0.075	m3				Set Target Cell: Pc Ens						Solve
4							Equal To: \bigcirc Max \bigcirc Min Value of: By Changing Cells:				3000000		
5	L	4.14267	m								30000		Close
6	radius	0.075913	m										
7										E	Guess		
8	I	2.61E-05	m4	<--------	$=\mathrm{Pl}^{*}{ }^{*}$ radius ${ }^{\wedge} 4 / 4$		Subject to the Constraints:						Options
9													
10	Volume	0.075	m3	<--------	$=\mathrm{Pl} 0^{*}$ radius ${ }^{2}{ }^{*} \mathrm{~L}$				\checkmark		Add		
11											Change		
12	Pc	3000000	N	<--------	$=\mathrm{Pl} 0^{\prime 2} 2^{*} \mathrm{E}^{* / / 2} \mathrm{~L}^{\wedge} 2$								Reset All
13											Delete		
14													Help
15													

An alternative solution can be developed by maximizing L subject to Volume $\leq 0.075 \mathrm{~m}^{3}$ and $P_{c} \geq 3,000,000 \mathrm{~N}$,

	A	B	C	D	E	F	G	H	1	J	K	L	M
1	P	$3.00 \mathrm{E}+106$	N				Solver Parameters X						
2	E	$2.00 \mathrm{E}+11$	N/m2										
3	Vgoal	0.075	m3				Set Target Cell: L Endes						Solve
4							Equal To: © Max Min Yalue of: By Changing Cells:				3000000		
5	L	4.14267	1 m								30000		Close
6	radius	0.075913	m										
7										Es,	Guess		
8	1	2.61E-05	m4	<-------	$=\mathrm{Pl}^{*}{ }^{*}$ radius ${ }^{\wedge} 4 / 4$		Subject to the Constraints:						Options
9					$=\mathrm{Pl} 0^{*}$ radius ${ }^{2}{ }^{*} \mathrm{~L}$								
10	Volume	0.075	m3	<--------			$\begin{aligned} & \mathrm{Pc}>=3000000 \\ & \text { Volume }<=\text { Vgoal } \end{aligned}$				Add		
11											Change		
12	Pc	3000000	N	<--------	$=P 10 \times 2{ }^{*} \mathrm{E}^{*} / L^{\prime 2} 2$								Reset All
13											Delete		
14													Help
15													

16.20 The total flow in the river: $F=2 \times 10^{6} \mathrm{~m}^{3} / \mathrm{d}$.

The flow into the channels:
$f_{1}+f_{2} \leq 0.7 F=1.4 \times 10^{6} \mathrm{~m}^{3} / \mathrm{d}$
Minimum channel flows for navigation:

$$
f_{1} \geq 0.3 \times 10^{6} \mathrm{~m}^{3} / \mathrm{d}
$$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
$f_{2} \geq 0.2 \times 10^{6} \mathrm{~m}^{3} / \mathrm{d}$
Political constraints:
$\frac{\left|f_{1}-f_{2}\right|}{f_{1}+f_{2}} \leq 0.4$
leads to
$f_{2} \geq \frac{3}{7} f_{1}$
$f_{2} \leq \frac{7}{3} f_{1}$
Maintenance cost per year, $C \leq \$ 1.8 \times 10^{6}$
Channel 1: $C_{1}=1.1 f_{1}$
Channel 2: $C_{2}=1.4 f_{2}$
leads to
$1.1 f_{1}+1.4 f_{2} \leq 1.8 \times 10^{6}$
Power revenue (revenue per year):
Channel 1: $r_{p 1}=4 f_{1}$
Channel 2: $r_{p 2}=3 f_{2}$
Irrigation revenue (revenue per year):
Channel 1: loss, $\alpha_{1}=0.3$
value/yr: $i_{1}=3.2(1-\alpha) f_{1}=2.24 f_{1}$
Channel 2: loss, $\alpha_{2}=0.2$
value/yr: $i_{2}=3.2(1-\alpha) f_{2}=2.56 f_{2}$
Net revenue $=$ Revenue - losses

$$
\begin{aligned}
& P=4 f_{1}+3 f_{2}+2.24 f_{1}+2.56 f_{2}-1.1 f_{1}-1.4 f_{2} \\
& P=5.14 f_{1}+4.16 f_{2}
\end{aligned}
$$

Therefore, the problem is formulated as
Decision variables:
f_{1} : flow in channel 1
f_{2} : flow in channel 2

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Maximize: $P=5.14 f_{1}+4.16 f_{2}$
Subject to

$f_{1}+f_{2} \leq 1.4 \times 10^{6}$	channel flow
$1.1 f_{1}+1.4 f_{2} \leq 1.8 \times 10^{6}$	maintenance
$0.43 f_{1}-f_{2} \leq 0$	political constraint 1
$-2.33 f_{1}+f_{2} \leq 0$	political constraint 2
$f_{1} \geq 0.3 \times 10^{6}$	minimum channel flow 1
$f_{2} \geq 0.2 \times 10^{6}$	minimum channel flow 2

The problem can then be set up and solved with a tool such as Excel:

	A	B	C	D	E
1		Channel 1	Channel 2 total	constraint	
2	Flow	0	0		
3		1	1	0	$1.40 \mathrm{E}+06$
4		1.1	1.4	0	$1.80 \mathrm{E}+06$
5		0.43	-1	0	0
6		-2.33	1	0	0
7		1		0	$3.00 \mathrm{E}+05$
8			1	0	$2.00 \mathrm{E}+05$
9					
10	Profit	5.14	4.16	0	

The cell formulas are

	A	B	C	D	E
1		Channel 1	Channel 2	total	constraint
2	Flow	0	0		
3		1	1	$=\mathrm{B} 3^{*} \mathrm{~B} \$ 2+\mathrm{C} 3^{*} \mathrm{C} \$ 2$	1400000
4		1.1	1.4	$=\mathrm{B} 4^{*} \mathrm{~B} \$ 2+\mathrm{C} 4^{*} \mathrm{C} \$ 2$	1800000
5		0.43	-1	$=\mathrm{B} 5^{*} \mathrm{~B} \$ 2+\mathrm{C} 5^{*} \mathrm{C} \$ 2$	0
6		-2.33	1	$=\mathrm{B} 6^{*} \mathrm{~B} \$ 2+\mathrm{C} 6^{*} \mathrm{C} \$ 2$	0
7		1		$=\mathrm{B} 7^{*} \mathrm{~B} \$ 2+\mathrm{C} 7^{*} \mathrm{C} \$ 2$	300000
8			1	$=\mathrm{B} 8^{*} \mathrm{~B} \$ 2+\mathrm{C} 8^{*} \mathrm{C} \$ 2$	200000
9					
10	Profit	5.14	4.16	$=\mathrm{B} 10^{*} \mathrm{~B} \$ 2+\mathrm{C} 10^{*} \mathrm{C} \$ 2$	

The Excel Solver can be invoked as

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

The resulting solution is

	A	B	C	D	E
1		Channel 1	Channel 2	total	constraint
2	Flow	979021	420979		
3		1	1	1400000	$1.40 \mathrm{E}+06$
4		1.1	1.4	1666294	$1.80 \mathrm{E}+06$
5		0.43	-1	0	0
6		-2.33	1	-1860140	0
7		1		979021	$3.00 \mathrm{E}+05$
8			1	420979	$2.00 \mathrm{E}+05$
9					
10	Profit	5.14	4.16	6783441	

16.21 The weight of the truss is equal to
$W=\rho\left(L_{1} A_{c}+L_{2} A_{t}+L_{3} A_{c}\right)$
where $\rho=$ density, $L_{i}=$ length of member $i, A_{c}=$ cross-sectional area of compression member, and $A_{t}=$ cross-sectional area of tension member. The lengths of the 3 members can be determined as $L_{1}=43.3013, L_{2}=50$, and $L_{3}=25$. Therefore, the solution can be formulated as a linear programming problem as

Minimize: $\quad W=3.5\left(43.3013 A_{c}+50 A_{t}+25 A_{c}\right)$
subject to

$$
\begin{aligned}
& A_{c} \geq 50 \\
& A_{t} \geq 43.3
\end{aligned}
$$

The solution can be developed in Excel using the Solver tool,

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

16.22 The solution can be developed in Excel using the Solver tool,

16.23 The problem can be formulated as

Minimize

$$
C=2 p_{1}+10 p_{2}+2
$$

subject to

$$
\begin{aligned}
& 0.6 p_{1}+0.4 p_{2} \geq 30 \\
& p_{1} \leq 42
\end{aligned}
$$

Using the Excel Solver:

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

	A	B	C	D	E	F	G	H	I	J	K	L	M
1							Solver Parameters $\quad \times$						
2	Individual power				Constraint								
3	p1	42			$<$	42	Set Target Cell:						Solve
4	p2	12											
5	Losses										0		Close
6	L1	9.6	<------	$=0.2 * B 3+0.1 * B 4$									
7	L2	14.4	<-------	$=0.2 * B 3+0.5^{*} \mathrm{~B} 4$			\$8\$3:\$8\$4 國				Guess		
8	Total power	30	<------		=	30	Subject to the Constraints:						Options
9													Optons
10	Costs						$\begin{aligned} & \$ B \$ 3<=\$ F \$ 3 \\ & \$ B \$ 8>=\$ F \$ 8 \end{aligned}$						
11	F1	86	<-------	$=2^{*} \mathrm{~B} 3+2$							Change		
12	F2	120	<------	$=10 * B 4$,		Reset All
13	Total cost	-206	<------	$=\mathrm{B} 11+\mathrm{B} 12$							Delete		
14													Help
15													

16.24 This is a trick question. Because of the presence of $(1-s)$ in the denominator, the function will experience a division by zero at the maximum. This can be rectified by merely canceling the $(1-s)$ terms in the numerator and denominator to give
$T=\frac{15 s}{4 s^{2}-3 s+4}$
Any of the optimizers described in this section can then be used to determine that the maximum of $T=3$ occurs at $s=1$.
16.25 (a) An LP formulation for this problem can be set up as

Maximize $P=500 x_{1}+400 x_{2}$
subject to

$$
\begin{aligned}
& 300 x_{1}+400 x_{2} \leq 127,000 \\
& 20 x_{1}+10 x_{2} \leq 4,270 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

An Excel spreadsheet can be set up to solve the problem as

(b) This problem can be formulated as

Maximize $P=500 x_{1}+\left(400-x_{2}\right) x_{2}$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
subject to

$$
\begin{aligned}
& 300 x_{1}+400 x_{2} \leq 127,000 \\
& 20 x_{1}+10 x_{2} \leq 4,270 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

An Excel spreadsheet can be set up to solve the problem as

16.26 An LP formulation for this problem can be set up as

Decision variables: $x_{r i}=$ chips produced in regular time for month i
$x_{o i}=$ chips produced in overtime for month i
$x_{s i}=$ chips stored for month i
Minimize $C=100 x_{r 1}+100 x_{r 2}+120 x_{r 3}+110 x_{o 1}+120 x_{o 2}+130 x_{o 3}+5 x_{s 1}+5 x_{s 2}$
subject to

$$
\begin{aligned}
& x_{r 1}+x_{o 1}-x_{s 1} \geq 1,000 \\
& x_{s 1}+x_{r 2}+x_{o 2}-x_{s 2} \geq 2,500 \\
& x_{s 2}+x_{r 3}+x_{o 3} \geq 2,200 \\
& 1.5 x_{r 1} \leq 2,400 \\
& 1.5 x_{r 2} \leq 2,400 \\
& 1.5 x_{r 3} \leq 2,400 \\
& 1.5 x_{o 1} \leq 720 \\
& 1.5 x_{o 2} \leq 720 \\
& 1.5 x_{o 3} \leq 720 \\
& x_{r 1}, x_{r 2}, x_{r 3}, x_{o 1}, x_{o 2}, x_{o 3}, x_{s 1}, x_{s 2} \geq 0
\end{aligned}
$$

An Excel spreadsheet can be set up to solve the problem as

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Note that before depressing the Solve button, the Options button should be depressed and the following boxes should be selected: "Assume Linear Model" and "Assume Non-Negative."

16.27 A tool such as the Excel Solver can be used to determine the solution as

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

The approach can be implemented to evaluate other values of W with a constant σ to yield the following results:

\boldsymbol{W}	\boldsymbol{V}	\boldsymbol{D}
12000	441.5154	2339.231
13000	459.5438	2534.167
14000	476.8912	2729.102
15000	493.6293	2924.038
16000	509.8181	3118.974
17000	525.5085	3313.910
18000	540.7438	3508.846
19000	555.5614	3703.782
20000	569.9940	3898.718

The optimal velocity along with the minimal drag can be plotted versus weight. As shown below, the relationship is fairly linear for the specified range.

16.28 A tool such as the Excel Solver can be used to determine the solution as

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

16.29 An LP formulation for this problem can be set up as

Minimize $\quad C=0.05 X+0.025 Y+0.15 Z$
\{Minimize cost \}
subject to
$X+Y+Z \geq 6$
\{Performance constraint \}
$X+Y<2.5$
\{Safety constraint \}
$X-Y \geq 0$
\{X-Y Relationship constraint $\}$
$Z-0.5 Y \geq 0$
\{ Y-Z Relationship constraint $\}$

An Excel spreadsheet can be set up to solve the problem as

| | A | B | C | D | E | F | G |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | | X | Y | Z | Total | | Constraint |
| 2 | Amount | 0 | 0 | 0 | | | |
| 3 | Performance | 1 | 1 | 1 | $0>=$ | 6 | |
| 4 | Safety | 1 | 1 | 0 | $0<=$ | 2.5 | |
| 5 | $X-Y$ | 1 | -1 | 0 | $0>=$ | 0 | |
| 6 | $Z-0.5^{* Y}$ | 0 | -0.5 | 1 | $0>=$ | 0 | |
| 7 | Cost | 0.05 | 0.025 | 0.15 | 0 | | |

The formulas are

	A	B	C	D	E	F	G
1		X	Y	Z	Total		Constraint
2	Amount	0	0	0			
3	Performance	1	1	1	= $\mathrm{B}^{*} \mathrm{~B}$ \$ $2+\mathrm{C} 3^{*} \mathrm{C}$ \$2+D3*D\$2	>=	6
4	Safety	1	1	0	=B4*B $\$ 2+\mathrm{C} 4^{*} \mathrm{C}$ \$ $2+\mathrm{D} 4 * \mathrm{D} \$ 2$	<	2.5
5	X-Y	1	-1	0	= $\mathrm{B}^{*} \mathrm{~B}$ \$ $2+\mathrm{C} 5^{*} \mathrm{C}$ \$ $2+\mathrm{D} 5 * \mathrm{D} \$ 2$	$>=$	0
6	Z-0.5*Y	0	-0.5	1	= $\mathrm{B}^{*} \mathrm{~B}$ \$2+C6*C $\$ 2+\mathrm{D} \mathrm{E}^{*} \mathrm{D} \$ 2$	$>=$	0
7	Cost	0.05	0.025	0.15	$=\mathrm{B} 7^{*} \mathrm{~B}$ \$2+C7*${ }^{\text {C }}$ \$ $2+\mathrm{D} 7 * \mathrm{D} \$ 2$		

The Solver can be called and set up as

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

The resulting solution is

	A	B	C	D	E	F	G
1		X	Y	Z	Total		Constraint
2	Amount	1.25	1.25	3.5			
3	Performance	1	1	1	6	$>=$	6
4	Safety	1	1	0	2.5	<	2.5
5	X-Y	1	-1	0	0	$>=$	0
6	Z-0.5*Y	0	-0.5	1	2.875	$>=$	0
7	Cost	0.05	0.025	0.15	0.61875		

16.30 An LP formulation for this problem can be set up as

Decision variables: $x_{i}=$ quantity of part i
Minimize $P=375 x_{A}+275 x_{B}+475 x_{C}+325 x_{D}$ subject to

$$
\begin{aligned}
& 2.5 x_{A}+1.5 x_{B}+2.75 x_{C}+2 x_{D} \leq 640 \\
& 3.5 x_{A}+3 x_{B}+3 x_{C}+2 x_{D} \leq 960
\end{aligned}
$$

A tool such as the Excel Solver can be used to determine the solution as

Thus, the results indicate that if we produce none of parts A and D and 192 and 128 of B and C, respectively, we will generate a maximum profit of $\$ 113,600$.

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

