# **CHAPTER 16**

16.1 The area and volume can be computed as

$$A = \pi r^2 + 2\pi r h \tag{1}$$
$$V = \pi r^2 h \tag{2}$$

An Excel spreadsheet can be set up to solve the problem as

|   | A              | В        |
|---|----------------|----------|
| 1 | radius         | 1        |
| 2 | height         | 1        |
| 3 |                |          |
| 4 | volume         | 3.141593 |
| 5 | desired volume | 0.5      |
| 6 |                |          |
| 7 | side area      | 6.283185 |
| 8 | bottom area    | 3.141593 |
| 9 | total area     | 9.424778 |

## The formulas are

|   | A              | В             |
|---|----------------|---------------|
| 1 | radius         | 1             |
| 2 | height         | 1             |
| 3 |                |               |
| 4 | volume         | =PI()*B1^2*B2 |
| 5 | desired volume | 0.5           |
| 6 |                |               |
| 7 | side area      | =2*PI()*B1*B2 |
| 8 | bottom area    | =PI()*B1^2    |
| 9 | total area     | =SUM(B7:B8)   |

The Solver can be called and set up as

| Solver Parameters                                         |           |
|-----------------------------------------------------------|-----------|
| Set Target Cell: \$5\$9                                   | Solve     |
| Equal To: O Max ③ Min O Value of: 0<br>By Changing Cells: | Close     |
| \$B\$1:\$B\$2                                             |           |
| Subject to the Constraints:                               | Options   |
| \$8\$4 >= \$8\$5                                          |           |
|                                                           | Reset All |
| Delete                                                    |           |

The resulting solution is

|   | A              | В        |
|---|----------------|----------|
| 1 | radius         | 0.542187 |
| 2 | height         | 0.541403 |
| 3 |                |          |
| 4 | volume         | 0.499999 |
| 5 | desired volume | 0.5      |
| 6 |                |          |
| 7 | side area      | 1.844378 |
| 8 | bottom area    | 0.923525 |
| 9 | total area     | 2.767902 |

Thus, the Solver says that the optimal cylindrical container is one where the radius equals the height. For the case of the desired  $V = 0.5 \text{ m}^3$ , the dimensions are r = h = 0.542 m.

The general result of r = h can be verified using calculus as follows. First, we can solve the volume equation for h as

$$h = \frac{V}{\pi r^2} \tag{3}$$

This can be substituted into the area equation to give

$$A = \pi r^{2} + 2\pi r \frac{V}{\pi r^{2}} = \pi r^{2} + \frac{2V}{r}$$

We can differentiate this equation with respect to r to yield

$$\frac{dA}{dr} = 2\pi r - \frac{2V}{r^2}$$

which can be set equal to zero and solved for

$$r = \sqrt[3]{\frac{V}{\pi}}$$

This result can then be substituted into Eq. 3 which can be solved for

$$h = \sqrt[3]{\frac{V}{\pi}}$$

Thus, we prove that the optimal container has  $r = h = (V/\pi)^{1/3}$ . For our desired volume of 0.5 m<sup>3</sup>, this means that  $r = h = (0.5/\pi)^{1/3} = 0.541926$  m, which confirms the result obtained numerically with the Excel Solver.

16.2 (a) The area and volume can be computed as

$$A = \pi r^2 + \pi r \sqrt{r^2 + h^2} \tag{1}$$

$$V = \frac{\pi r^2 h}{3}$$

An Excel spreadsheet can be set up to solve the problem as

|   | A              | В        |
|---|----------------|----------|
| 1 | radius         | 1        |
| 2 | height         | 1        |
| 3 |                |          |
| 4 | volume         | 1.047198 |
| 5 | desired volume | 0.5      |
| 6 |                |          |
| 7 | top area       | 3.141593 |
| 8 | side area      | 4.442883 |
| 9 | total area     | 7.584476 |

The formulas are

|   | A              | В                        |
|---|----------------|--------------------------|
| 1 | radius         | 1                        |
| 2 | height         | 1                        |
| 3 | 1.000          |                          |
| 4 | volume         | =PI()*B1/2*B2/3          |
| 5 | desired volume | 0.5                      |
| 6 |                |                          |
| 7 | top area       | =PI()*B1/2               |
| 8 | side area      | =PI()*B1*SQRT(B1^2+B2^2) |
| 9 | total area     | =87+88                   |

The Solver can be called and set up as

| Solver Parameters                                                                    |                |
|--------------------------------------------------------------------------------------|----------------|
| Set Target Cell:<br>Equal To: <u>Max</u> Min <u>V</u> alue of:<br>By Changing Cells: | Solve<br>Close |
| \$B\$1:\$B\$2 Guess Subject to the Constraints:                                      | Options        |
| \$B\$4 >= \$B\$5 <u>A</u> dd<br>Change                                               |                |
| Delete                                                                               | Reset All      |

The resulting solution is

**PROPRIETARY MATERIAL**. © The McGraw-Hill Companies, Inc. All rights reserved. <u>No part of this Manual</u> may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

(2)

| 1 | A              | В        |
|---|----------------|----------|
| 1 | radius         | 0.552892 |
| 2 | height         | 1.561923 |
| 3 |                |          |
| 4 | volume         | 0.5      |
| 5 | desired volume | 0.5      |
| 6 |                |          |
| 7 | top area       | 0.960353 |
| 8 | side area      | 2.877962 |
| 9 | total area     | 3.838315 |

(b) For this case, the area and volume can be computed as

$$A = \pi r \sqrt{r^2 + h^2}$$
$$V = \frac{\pi r^2 h}{3}$$

An Excel spreadsheet can be set up to solve the problem in a similar fashion to part (a) with the result: r = 0.6964 m and h = 0.9844 m.

**16.3** This problem can be solved in a number of different ways. For example, using the golden section search, the result is

| i  | Cı     | g(c <sub>i</sub> ) | <b>C</b> 2 | <b>g(c</b> <sub>2</sub> ) | <b>C</b> 1 | <b>g(c</b> 1) | Cu      | $g(c_u)$ | d      | Copt   | Ea      |
|----|--------|--------------------|------------|---------------------------|------------|---------------|---------|----------|--------|--------|---------|
| 1  | 0.0000 | 0.0000             | 3.8197     | 0.2330                    | 6.1803     | 0.1310        | 10.0000 | 0.0641   | 6.1803 | 3.8197 | 100.00% |
| 2  | 0.0000 | 0.0000             | 2.3607     | 0.3350                    | 3.8197     | 0.2330        | 6.1803  | 0.1310   | 3.8197 | 2.3607 | 100.00% |
| 3  | 0.0000 | 0.0000             | 1.4590     | 0.3686                    | 2.3607     | 0.3350        | 3.8197  | 0.2330   | 2.3607 | 1.4590 | 100.00% |
| 4  | 0.0000 | 0.0000             | 0.9017     | 0.3174                    | 1.4590     | 0.3686        | 2.3607  | 0.3350   | 1.4590 | 1.4590 | 61.80%  |
| 5  | 0.9017 | 0.3174             | 1.4590     | 0.3686                    | 1.8034     | 0.3655        | 2.3607  | 0.3350   | 0.9017 | 1.4590 | 38.20%  |
| 6  | 0.9017 | 0.3174             | 1.2461     | 0.3593                    | 1.4590     | 0.3686        | 1.8034  | 0.3655   | 0.5573 | 1.4590 | 23.61%  |
| 7  | 1.2461 | 0.3593             | 1.4590     | 0.3686                    | 1.5905     | 0.3696        | 1.8034  | 0.3655   | 0.3444 | 1.5905 | 13.38%  |
| 8  | 1.4590 | 0.3686             | 1.5905     | 0.3696                    | 1.6718     | 0.3688        | 1.8034  | 0.3655   | 0.2129 | 1.5905 | 8.27%   |
| 9  | 1.4590 | 0.3686             | 1.5403     | 0.3696                    | 1.5905     | 0.3696        | 1.6718  | 0.3688   | 0.1316 | 1.5905 | 5.11%   |
| 10 | 1.5403 | 0.3696             | 1.5905     | 0.3696                    | 1.6216     | 0.3694        | 1.6718  | 0.3688   | 0.0813 | 1.5905 | 3.16%   |
| 11 | 1.5403 | 0.3696             | 1.5713     | 0.3696                    | 1.5905     | 0.3696        | 1.6216  | 0.3694   | 0.0502 | 1.5713 | 1.98%   |
| 12 | 1.5403 | 0.3696             | 1.5595     | 0.3696                    | 1.5713     | 0.3696        | 1.5905  | 0.3696   | 0.0311 | 1.5713 | 1.22%   |
| 13 | 1.5595 | 0.3696             | 1.5713     | 0.3696                    | 1.5787     | 0.3696        | 1.5905  | 0.3696   | 0.0192 | 1.5713 | 0.75%   |

Thus, after 13 iterations, the method is converging on the true value of c = 1.5679 which corresponds to a maximum specific growth rate of g = 0.36963.

16.4 (a) The LP formulation is given by

 $Maximize C = 30X + 30Y + 35Z \qquad {Maximize profit}$ 

subject to

 $6X + 4Y + 12Z \le 2500$  {Raw chemical constraint}  $0.05X + 0.1Y + 0.2Z \le 55$  {Time constraint}

| $X + Y + Z \le 450$ | {Storage constraint}     |
|---------------------|--------------------------|
| $X, Y, Z \ge 0$     | {Positivity constraints} |

| Basis | С | Х      | Y        | Ζ   | S1      | S2 | S3    | Solution | Intercept |
|-------|---|--------|----------|-----|---------|----|-------|----------|-----------|
| Р     | 1 | -30    | -30      | -35 | 0       | 0  | 0     | 0        |           |
| S1    | 0 | 6      | 4        | 12  | 1       | 0  | 0     | 2500     | 208.3333  |
| S2    | 0 | 0.05   | 0.1      | 0.2 | 0       | 1  | 0     | 55       | 275       |
| S3    | 0 | 1      | 1        | 1   | 0       | 0  | 1     | 450      | 450       |
|       |   |        |          |     |         |    |       |          |           |
| Basis | С | Х      | Y        | Ζ   | S1      | S2 | S3    | Solution | Intercept |
| Р     | 1 | -12.5  | -18.3333 | 0   | 2.91667 | 0  | 0     | 7291.667 |           |
| Z     | 0 | 0.5    | 0.33333  | 1   | 0.08333 | 0  | 0     | 208.3333 | 625       |
| S2    | 0 | -0.05  | 0.03333  | 0   | -0.0167 | 1  | 0     | 13.33333 | 400       |
| S3    | 0 | 0.5    | 0.66667  | 0   | -0.0833 | 0  | 1     | 241.6667 | 362.5     |
|       |   |        |          |     |         |    |       |          |           |
| Basis | С | Х      | Y        | Ζ   | S1      | S2 | S3    | Solution | Intercept |
| Р     | 1 | 1.25   | 0        | 0   | 0.625   | 0  | 27.5  | 13937.5  |           |
| Z     | 0 | 0.25   | 0        | 1   | 0.125   | 0  | -0.5  | 87.5     | 700       |
| S2    | 0 | -0.075 | 0        | 0   | -0.0125 | 1  | -0.05 | 1.25     | -100      |
| Y     | 0 | 0.75   | 1        | 0   | -0.125  | 0  | 1.5   | 362.5    | -2900     |

(b) The simplex tableau for the problem can be set up and solved as

(c) An Excel spreadsheet can be set up to solve the problem as

| í. | A        | В         | C         | D         | E     | F          |
|----|----------|-----------|-----------|-----------|-------|------------|
| 1  |          | Product 1 | Product 2 | Product 3 | Total | Constraint |
| 2  | amount   | 0         | 0         | 0         |       |            |
| 3  | material | 6         | 4         | 12        | 0     | 2500       |
| 4  | time     | 0.05      | 0.1       | 0.2       | 0     | 55         |
| 5  | storage  | 1         | 1         | 1         | 0     | 450        |
| 6  | profit   | 30        | 30        | 35        | 0     |            |

The formulas are

| 1 | A        | B         | C         | D         | E                        | F          |
|---|----------|-----------|-----------|-----------|--------------------------|------------|
| 1 | -        | Product 1 | Product 2 | Product 3 | Total                    | Constraint |
| 2 | amount   | 0         | 0         | 0         |                          | 1          |
| 3 | material | 6         | 4         | 12        | =B3*B\$2+C3*C\$2+D3*D\$2 | 2500       |
| 4 | time     | 0.05      | 0.1       | 0.2       | =B4*B\$2+C4*C\$2+D4*D\$2 | 55         |
| 5 | storage  | 1         | 1         | 1         | =B5*B\$2+C5*C\$2+D5*D\$2 | 450        |
| 6 | profit   | 30        | 30        | 35        | =B6*B\$2+C6*C\$2+D6*D\$2 |            |

The Solver can be called and set up as

| 5et Target Cell: \$E\$6 💽                                                                                                               | Solve                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| iqual To: <u>Max</u> Min <u>y</u> alue of:<br>By Changing Cells:                                                                        | : 0 Close                                |
| 4842/4D42                                                                                                                               | Guess                                    |
| 4045.4045                                                                                                                               |                                          |
| Subject to the Constraints:                                                                                                             | Options                                  |
| subject to the Constraints:                                                                                                             |                                          |
| Subject to the Constraints:<br>$\$B\$2 \ge 0$<br>$\$C\$2 \ge 0$<br>$\$C\$2 \ge 0$<br>$\$D\$2 \ge 0$                                     | <u>A</u> dd                              |
| \$ubject to the Constraints:           \$B\$2>=0           \$C\$2>=0           \$D\$2>=0           \$D\$2>=0           \$E\$3<=         | <u>Add</u> <u>Change</u> Peret 0         |
| $$y_{1},y_{2} \in C$ Subject to the Constraints: $$B$_{2} >= 0$ $$C$_{2} >= 0$ $$b$_{2} >= 0$ $$t$_{3} <= $F$_{3}$ $$t$_{4} <= $t$_{4}$ | <u>A</u> dd <u>Change</u> <u>Reset /</u> |

The resulting solution is

|   | A        | B         | C         | D         | E       | F                      |
|---|----------|-----------|-----------|-----------|---------|------------------------|
| 1 | 5        | Product 1 | Product 2 | Product 3 | Total   | Constraint             |
| 2 | amount   | 0         | 362.5     | 87.5      |         | al and a second second |
| 3 | material | 6         | 4         | 12        | 2500    | 2500                   |
| 4 | time     | 0.05      | 0.1       | 0.2       | 53.75   | 55                     |
| 5 | storage  | 1         | 1         | 1         | 450     | 450                    |
| 6 | profit   | 30        | 30        | 35        | 13937.5 |                        |

In addition, a sensitivity report can be generated as

|    | A B      | C                  | D          | E       | F           | G         | Н           |
|----|----------|--------------------|------------|---------|-------------|-----------|-------------|
| 1  | Microso  | ft Excel 11.0 Sens | sitivity R | eport   |             |           |             |
| 2  | Worksh   | eet: [Prob1604.xls | ]Sheet1    |         |             |           |             |
| 3  | Report   | Created: 6/29/2005 | 8:38:14    | AM      |             |           |             |
| 4  |          |                    |            |         |             |           |             |
| 5  |          |                    |            |         |             |           |             |
| 6  | Adjustal | ole Cells          |            |         |             |           |             |
| 7  |          |                    | Final      | Reduced | Objective   | Allowable | Allowable   |
| 8  | Cell     | Name               | Value      | Cost    | Coefficient | Increase  | Decrease    |
| 9  | \$B\$2   | amount Product 1   | 0          | -1.25   | 30          | 1.25      | 1E+30       |
| 10 | \$C\$2   | amount Product 2   | 362.5      | 0       | 30          | 5         | 1.666666667 |
| 11 | \$D\$2   | amount Product 3   | 87.5       | 0       | 35          | 55        | 5           |
| 12 |          |                    |            |         |             |           |             |
| 13 | Constra  | ints               |            |         |             |           |             |
| 14 | 10 M     |                    | Final      | Shadow  | Constraint  | Allowable | Allowable   |
| 15 | Cell     | Name               | Value      | Price   | R.H. Side   | Increase  | Decrease    |
| 16 | \$E\$3   | material Total     | 2500       | 0.625   | 2500        | 100       | 700         |
| 17 | \$E\$4   | time Total         | 53.75      | 0       | 55          | 1E+30     | 1.25        |
| 18 | \$E\$5   | storage Total      | 450        | 27.5    | 450         | 25        | 241.6666667 |

(d) The high shadow price for storage from the sensitivity analysis from (c) suggests that increasing storage will result in the best increase in profit.

16.5 An LP formulation for this problem can be set up as

Maximize  $P = 2000Z_1 - 75Z_2 + 250Z_3 - 300W$  {Maximize profit}

subject to

| $Z_1 + Z_2 \le 7500$      | $\{X \text{ material constraint}\}$ |
|---------------------------|-------------------------------------|
| $2.5Z_1 + Z_3 \le 12,500$ | { <i>Y</i> material constraint }    |
| $Z_1 - Z_2 - Z_3 - W = 0$ | {Waste constraint}                  |

An Excel spreadsheet can be set up to solve the problem as

|   | A        | В    | С   | D   | E    | F     | G          |
|---|----------|------|-----|-----|------|-------|------------|
| 1 |          | Z1   | Z2  | Z3  | W    | total | constraint |
| 2 | amount   | 0    | 0   | 0   | 0    |       |            |
| 3 | amount X | 1    | 1   | 0   | 0    | 0     | 7500       |
| 4 | amount Y | 2.5  | 0   | 1   | 0    | 0     | 12500      |
| 5 | amount W | 1    | -1  | -1  | -1   | 0     |            |
| 6 | profit   | 2000 | -75 | 250 | -300 | 0     |            |

The formulas are

|   | A        | B    | C   | D   | E    | F                                | G          |
|---|----------|------|-----|-----|------|----------------------------------|------------|
| 1 | 35       | Z1   | Z2  | Z3  | W    | total                            | constraint |
| 2 | amount   | 0    | 0   | 0   | 0    |                                  |            |
| 3 | amount X | 1    | 1   | 0   | 0    | =B3*B\$2+C3*C\$2+D3*D\$2+E3*E\$2 | 7500       |
| 4 | amount Y | 2.5  | 0   | 1   | 0    | =B4*B\$2+C4*C\$2+D4*D\$2+E4*E\$2 | 12500      |
| 5 | amount W | 1    | -1  | -1  | -1   | =B5*B\$2+C5*C\$2+D5*D\$2+E5*E\$2 |            |
| 6 | profit   | 2000 | -75 | 250 | -300 | =B6*B\$2+C6*C\$2+D6*D\$2+E6*E\$2 |            |

The Solver can be called and set up as

| Solver Parameters                                                         |                        |
|---------------------------------------------------------------------------|------------------------|
| Set Target Cell:<br>Equal To: <u>Max</u> <u>Min</u> <u>V</u> alue of: 0   | <u>S</u> olve<br>Close |
| \$B\$2:\$E\$2     Guess       Subject to the Constraints:     \$C\$2 >= 0 | Options                |
| \$D\$2 >= 0                                                               |                        |

The resulting solution is

| 2 | A        | B    | C    | D   | E    | F       | G          |
|---|----------|------|------|-----|------|---------|------------|
| 1 | 1        | Z1   | Z2   | Z3  | W    | total   | constraint |
| 2 | amount   | 5000 | 2500 | 0   | 2500 |         | -          |
| 3 | amount X | 1    | 1    | 0   | 0    | 7500    | 7500       |
| 4 | amount Y | 2.5  | 0    | 1   | 0    | 12500   | 12500      |
| 5 | amount W | 1    | -1   | -1  | -1   | 0       |            |
| 6 | profit   | 2000 | -75  | 250 | -300 | 9062500 |            |

This is an interesting result which might seem counterintuitive at first. Notice that we create some of the unprofitable  $Z_2$  while producing none of the profitable  $Z_3$ . This occurred because

we used up all of Y in producing the highly profitable  $Z_1$ . Thus, there was none left to produce  $Z_3$ .

**16.6** Substitute  $x_B = 1 - x_T$  into the pressure equation,

$$(1 - x_T)P_{sat_B} + x_T P_{sat_T} = P$$

and solve for  $x_T$ ,

$$x_T = \frac{P - P_{sat_B}}{P_{sat_T} - P_{sat_B}} \tag{1}$$

where the partial pressures are computed as

$$P_{sat_B} = 10^{\left(6.905 - \frac{1211}{T + 221}\right)}$$
$$P_{sat_T} = 10^{\left(6.953 - \frac{1344}{T + 219}\right)}$$

The solution then consists of maximizing Eq. 1 by varying *T* subject to the constraint that  $0 \le x_T \le 1$ . The Excel Solver can be used to obtain the solution. Here is how the worksheet can be set up:

| 2  | A        | В                    | С             | D          | E           | F                   | G   | Н            |
|----|----------|----------------------|---------------|------------|-------------|---------------------|-----|--------------|
| 1  | Prob16.6 |                      |               |            |             |                     |     |              |
| 2  |          |                      |               |            |             |                     |     |              |
| 3  | T        | 0                    |               |            |             |                     |     |              |
| 4  |          |                      |               |            |             |                     |     |              |
| 5  | Ρ        | 800                  |               |            |             |                     |     |              |
| 6  |          |                      |               |            |             |                     |     |              |
| 7  | PsatB    | 26.62944             | <             | =10^(6.905 | 5-1211/(T+) | 221))               |     |              |
| 8  | PsatT    | 6.546568             | <             | =10^(6.953 | 3-1344/(T+) | 219))               |     |              |
| 9  |          |                      |               | 7 50       |             | 1                   |     |              |
| 10 | хT       | -38.509              | <             | =(P-PsatE  | )/(PsatT-P  | 'satB)              |     |              |
| 11 |          |                      |               | 19.520     | 5.751       | 1. 100              |     |              |
| 12 |          | C                    |               |            |             |                     |     |              |
| 13 |          | Solver Par           | ameters       |            |             |                     |     |              |
| 14 |          | Set Target (         | Iell:         | B\$10 🔜    | 1           |                     |     | Solve        |
| 15 |          | Equal To:            | 0             | 0.00       | 2<br>       | 0                   |     |              |
| 16 |          | Equal ro.            | • Colley      |            | V value or: |                     |     | Close        |
| 17 |          | by changin           | y cells;      |            |             |                     |     |              |
| 18 |          | \$B\$3               |               |            |             | 🔚 🛛 🔂 🛄             | ss  |              |
| 19 |          | Subject to I         | be Constrain  | ter        |             | 10 - 2 <del>0</del> |     |              |
| 20 |          | <u>Da</u> bject to t | and constrain | (62)       |             |                     |     | Options      |
| 21 |          | \$B\$10 <=           | 1             |            |             | A Ad                | ±   |              |
| 22 |          | \$6\$10 >=           | U             |            |             | Cohan               |     |              |
| 23 |          |                      |               |            |             |                     | ige | Reset All    |
| 24 |          |                      |               |            |             | Dele                | te  | - Topor Hill |
| 25 |          |                      |               |            | 1           |                     |     | Help         |
| 26 |          | -                    |               |            |             |                     |     |              |

The result is T = 112.8592 as shown below:

|    | A           | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C | D          | E            | F    |
|----|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------|--------------|------|
| 1  | Prob16.6    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |              |      |
| 2  | 20<br>10 10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |            |              |      |
| 3  | Т           | 112.8592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |            |              |      |
| 4  |             | Contraction (Contraction of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |            |              |      |
| 5  | P           | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |            |              |      |
| 6  |             | in the second se |   |            |              |      |
| 7  | PsatB       | 1895.496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < | =10^(6.90  | 5-1211/(T+2  | 21)) |
| 8  | PsatT       | 800.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < | =10^(6.95) | 3-1344/(T+2  | 19)) |
| 9  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 26.<br>    | 1. X.        |      |
| 10 | хT          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < | =(P-PsatE  | 3)/(PsatT-Ps | atB) |

**16.7** This is a straightforward problem of varying  $x_A$  in order to minimize



First, the function can be plotted versus  $x_A$ 



The result indicates a minimum between 0.5 and 0.6. Using golden section search or a package like Excel or MATLAB yields a minimum of 0.587683.

**16.8** This is a case of constrained nonlinear optimization. The conversion factors range between 0 and 1. In addition, the cost function can not be evaluated for certain combinations of  $X_{A1}$  and  $X_{A2}$ . The problem is the second term,

$$\left(\frac{1-\frac{x_{A1}}{x_{A2}}}{(1-x_{A2})^2}\right)^{0.6}$$

If  $x_{A1} > x_{A2}$ , the numerator will be negative and the term cannot be evaluated.

Excel Solver can be used to solve the problem:

|    | B4   | -               | <b>∱</b> =(XA1/             | XA2/(1-XA1)   | )^2)^0.6+((1- | -(XA1/XA2)) | )/(1-XA2)^2)' | 0.6+6*(1/ | XA2)^0.6  |
|----|------|-----------------|-----------------------------|---------------|---------------|-------------|---------------|-----------|-----------|
| 1  | A    | В               | С                           | D             | E             | F           | G             | Н         | L I       |
| 1  | XA1  | 0.5             |                             |               |               |             |               |           |           |
| 2  | XA2  | 0.6             |                             |               |               |             |               |           |           |
| 3  |      |                 |                             |               |               |             |               |           |           |
| 4  | Cost | 11.23606        |                             |               | _             |             |               |           |           |
| 5  |      | 14              |                             |               |               |             |               | ·         | 1 10      |
| 6  |      |                 | Solver Pa                   | rameters      |               |             |               |           | X         |
| 7  |      |                 |                             |               |               |             |               |           |           |
| 8  |      |                 | Set Target                  | Cell:         | ;B\$4 📃 💽     |             |               |           | Solve     |
| 9  |      |                 | Equal To:                   | O Max         | Min           | O Value of: | 0             |           | Class )   |
| 10 |      | -               | By Changi                   | ng Cells:     |               |             |               |           | Close     |
| 11 |      |                 | det 1. det                  | +2            |               | 6           |               |           |           |
| 12 |      | _               | \$0\$1:\$03                 | p2            |               |             |               | 5         |           |
| 13 |      | _               | Subject to                  | the Constrain | nts:          |             |               | 1         | Options   |
| 14 |      | _               | XA1 <= 1                    | 1             |               |             | Add           |           |           |
| 15 |      | _               | XA1 <= 3                    | KA2           |               | 9           |               |           |           |
| 16 |      |                 | XA1 >= 0                    |               |               |             | Chan          | ge _      |           |
| 17 |      |                 | $XA2 \leq = 1$<br>XA2 > = 1 | )             |               |             |               | _ L       | Reset All |
| 18 |      |                 |                             | -             |               | 13          | Delet         |           | Help      |
| 19 | 1    | -               |                             |               |               |             |               |           |           |
| 20 |      | - 1 C - 1 C - 1 | 199                         |               |               |             |               |           |           |

### The result is

|   | A    | В        |
|---|------|----------|
| 1 | XA1  | 0.368949 |
| 2 | XA2  | 0.627265 |
| 3 | 10   |          |
| 4 | Cost | 11.12039 |

**16.9** This problem can be set up on Excel and the answer generated with Solver. Note that we have named the cells with the labels in the adjacent left columns.

|    | A           | В      | С | D            | E | F                       | G             | Н         | 1         | J           | K  | L         |
|----|-------------|--------|---|--------------|---|-------------------------|---------------|-----------|-----------|-------------|----|-----------|
| 1  | Prob. 16.9  |        |   |              |   |                         |               |           |           |             |    |           |
| 2  | 0)<br>19672 |        |   |              |   | Solver Dar              | amotore       |           |           |             |    |           |
| 3  | K           | 2      |   |              |   | Solver Fai              | ameters       |           |           |             |    |           |
| 4  | BO          | 100    |   |              |   | Set Target              | Cell:         | rofit 🛛 📑 | 1         |             | ſ  | Solve     |
| 5  | CA          | -1     |   |              |   | Equal Top               | <b>A</b>      | 0         |           | 0           |    |           |
| 6  | CC          | 10     |   |              |   | Du Chapele              |               |           | Value or: | L.          |    | Close     |
| 7  |             |        |   |              |   | by changin              | y cells;      |           |           | 14          |    |           |
| 8  | AO          | 200    |   |              |   | \$B\$8:\$B\$9           | 9             |           |           | Gue:        | 55 |           |
| 9  | С           | 90     |   |              |   | Subject to I            | the Constrain | here.     |           |             |    |           |
| 10 |             |        |   |              |   | <u>Su</u> bject to      |               | 90        |           |             |    | Options   |
| 11 | A           | 20     | < | =A0-2*C      |   | A >= 0                  |               |           | 2         | <u>A</u> do | 1  |           |
| 12 | В           | 10     | < | =B0-C        |   | $A0 \ge 0$<br>$B \ge 0$ |               |           |           | Cohan       |    |           |
| 13 |             |        |   |              |   | C_>=0                   |               |           |           | Linan       |    | Reset All |
| 14 | Kcalc       | 0.0225 | < | =C /(A^2*B)  |   | K = Kcalc               |               |           |           | Dele        | te |           |
| 15 |             |        |   |              |   | L                       |               |           |           |             |    | Help      |
| 16 | Profit      | 700    | < | =CA*AD+CC*C_ |   | 0 k                     |               |           |           |             |    |           |

The solution is

|    | A                | В        | C | D           |
|----|------------------|----------|---|-------------|
| 1  | Prob. 16.9       |          |   |             |
| 2  | 200<br>1. an 170 |          |   |             |
| 3  | K                | 2        |   |             |
| 4  | B0               | 100      |   |             |
| 5  | CA               | -1       |   |             |
| 6  | CC               | 10       |   |             |
| 7  |                  |          |   |             |
| 8  | AO               | 208.085  |   |             |
| 9  | С                | 99.41872 |   |             |
| 10 | 10<br>10 mm      |          |   |             |
| 11 | A                | 9.247574 | < | =A0-2*C_    |
| 12 | В                | 0.581276 | < | =B0-C_      |
| 13 | 1                |          |   |             |
| 14 | Kcalc            | 2        | < | =C_/(A^2*B) |
| 15 |                  |          |   |             |
| 16 | Profit           | 786.1022 | < | =CA*AD+CC*C |

**16.10** The problem can be set up in Excel Solver. Note that we have named the cells with the labels in the adjacent left columns.

|    | А           | В             | C      | D                | E              | F          | G                                     | Н        |      | J         |
|----|-------------|---------------|--------|------------------|----------------|------------|---------------------------------------|----------|------|-----------|
| 1  | Prob. 16.10 |               | 1      | Solver Param     | eters          |            |                                       |          |      |           |
| 2  |             |               |        |                  |                |            |                                       |          |      |           |
| 3  | Unitcost1   | \$ 0.50       | ) \$/L | Set Target Cell: | To             | tal_cosi 📑 |                                       |          |      | Solve     |
| 4  | Unitcost2   | \$ 1.00       | ) \$/L | Equal To: (      | Max            | Min        | O Value of:                           | 0        |      |           |
| 5  | Unitcost3   | \$ 1.20       | ) \$/L | By Changing C    | ells:          |            | <u></u>                               | 1000     |      | Close     |
| 6  | 1           |               |        | gy changing c    |                |            | -                                     | -        |      |           |
| 7  | conc1       | 13            | 5 mg/L | \$B\$15:\$B\$17  |                |            |                                       | Gu       | BSS  |           |
| 8  | conc2       | 10            | 0 mg/L | Subject to the   | Constraint     | s)         |                                       |          |      | Options   |
| 9  | conc3       | 7             | 5 mg/L | Comp II. A       |                |            |                                       | -        |      |           |
| 10 |             |               | 2.8    |                  | Concr<br>poly1 |            | ~                                     | <u>A</u> | bb   |           |
| 11 | Supply1     | 200000        | D L/d  | Flow2 <= Sup     | ply2           |            |                                       | Cha      | DOR  |           |
| 12 | Supply2     | 100000        | D L/d  | Flow3 <= Sup     | ply3           |            |                                       |          | ingo | Reset All |
| 13 | Supply3     | 50000         | D L/d  | Flowt >= Flow    | vr             |            | ~                                     | Del      | ete  |           |
| 14 |             |               |        |                  |                |            |                                       |          |      | Help      |
| 15 | Flow1       | 30000         | 0 L/d  |                  |                |            |                                       |          |      |           |
| 16 | Flow2       | 30000         | D L/d  |                  |                |            | · · · · · · · · · · · · · · · · · · · |          |      |           |
| 17 | Flow3       | 30000         | D L/d  |                  |                |            |                                       |          |      |           |
| 18 |             |               |        |                  |                |            |                                       |          |      |           |
| 19 | Flowt       | 90000         | D L/d  | =Flow1+Flow2     | 2+Flow3        |            |                                       |          |      |           |
| 20 |             |               |        |                  |                |            |                                       |          |      |           |
| 21 | Flowr       | 100000        | 0 L/d  |                  |                |            |                                       |          |      |           |
| 22 | 1           |               |        |                  |                |            |                                       |          |      |           |
| 23 | ConcBulk    | 103.333333    | 3 mg/L | =(Flow1*conc     | 1+Flow2*       | *conc2+F   | low3*conc3)/F                         | lowt     |      |           |
| 24 |             |               | -      |                  |                |            | 1                                     |          |      | -         |
| 25 | Concr       | 10            | 0 mg/L |                  |                |            |                                       |          |      |           |
| 26 | N           |               | 2.8    |                  | -              |            |                                       |          |      |           |
| 27 | Total cost  | \$ 810,000.00 |        | =Unitcost1*FI    | ow1+Unit       | tcost2*Fl  | ow2+Unitcost                          | 3*Flow3  |      |           |

#### The solution is

| 15 | Flow1      | 357143        | L/d     |
|----|------------|---------------|---------|
| 16 | Flow2      | 142857        | L/d     |
| 17 | Flow3      | 500000        | L/d     |
| 18 |            |               |         |
| 19 | Flowt      | 100000        | L/d     |
| 20 |            |               |         |
| 21 | Flowr      | 1000000       | L/d     |
| 22 |            |               |         |
| 23 | ConcBulk   | 100.0000001   | mg/L    |
| 24 |            |               | ri - 36 |
| 25 | Concr      | 100           | mg/L    |
| 26 |            |               | C - 385 |
| 27 | Total cost | \$ 921,428.57 |         |

**16.11** Here is a diagram for this problem:



The following formulas can be developed:

$$\theta = \tan^{-1} \frac{1}{s} \tag{1}$$

$$P = 2d\sqrt{1+s^2} \tag{2}$$

$$A = sd^2 \tag{3}$$

Then the following Excel worksheet and Solver application can be set up:

|    | A               | В        | С | D                  | E                 | F             | G     | Н         |            | J    | K         |
|----|-----------------|----------|---|--------------------|-------------------|---------------|-------|-----------|------------|------|-----------|
| 1  | S               | 0.5      |   |                    | Solver Day        | amotore       |       |           |            |      |           |
| 2  | d               | 5        |   |                    | Joiver Par        | ameters       |       |           |            |      |           |
| 3  |                 |          |   |                    | Set Target        | Cell:         | 3B\$7 |           |            |      | Solve     |
| 4  | A               | 12.5     | < | =B1*B2^2           | Equal To:         |               | 0     |           | 0          | 10.0 |           |
| 5  | Agoal           | 50       |   |                    | Equal TO.         |               |       | Value or: | 0          |      | Close     |
| 6  |                 | 1        |   |                    | by changin        | iy cells:     |       |           |            |      |           |
| 7  | P               | 11.18034 | < | =2*SQRT(1+B1^2)*B2 | \$B\$1:\$B\$      | 2             |       |           | 💁 🛛 📴 🖬    | 55   |           |
| 8  | ÷.              |          | - | 2 2                | Subject to        | the Constrain | ster  |           | -          |      |           |
| 9  | angle (radians) | 1.107149 | < | =ATAN(1/B1)        | <u>Dabject to</u> | che constrait | 1051  |           |            |      | Options   |
| 10 | angle (degrees) | 63.43495 | < | =B9*180/PI()       | \$B\$4 = \$E      | 3\$5          |       | 2         | <u>A</u> d | d    |           |
| 11 |                 |          |   |                    |                   |               |       |           |            |      |           |
| 12 |                 |          |   |                    |                   |               |       |           |            | ige  | Reset All |
| 13 |                 |          |   |                    |                   |               |       | 12        | Dele       | te   |           |
| 14 |                 |          |   |                    |                   |               |       | 12        |            |      | Help      |
| 15 | 1               | 1        |   | 1                  | L.                |               |       |           |            |      |           |

Our goal is to minimize the wetted perimeter by varying the side slope and the depth. We apply the constraint that the computed area must equal the desired area. The result is

|    | A               | В        | С | D                  |
|----|-----------------|----------|---|--------------------|
| 1  | S               | 1.000088 |   |                    |
| 2  | d               | 7.070756 |   |                    |
| 3  |                 |          |   |                    |
| 4  | A               | 50       | < | =B1*B2^2           |
| 5  | Agoal           | 50       |   |                    |
| 6  | 1               |          |   |                    |
| 7  | P               | 20       | < | =2*SQRT(1+B1^2)*B2 |
| 8  |                 |          |   |                    |
| 9  | angle (radians) | 0.785354 | < | =ATAN(1/B1)        |
| 10 | angle (degrees) | 44.99747 | < | =B9*180/PI()       |

Thus, this specific application indicates that a  $45^{\circ}$  angle yields the minimum wetted perimeter.

The verification that this result is universal can be attained inductively or deductively. The inductive approach involves trying several different desired areas in conjunction with our solver solution. As long as the desired area is greater than 0, the result for the optimal design will be  $45^{\circ}$ .

The deductive verification involves calculus. First, Eq. 3 can be solved for d and the result substituted into Eq. 2 to give

$$P = 2\sqrt{A\left(s + \frac{1}{s}\right)} \tag{4}$$

The minimum wetted perimeter should occur when the derivative of the perimeter with respect to *s* flattens out. That is, the slope is zero. Setting the derivative of Eq. 4 to zero yields,

$$\frac{dP}{ds} = \frac{1 - \frac{1}{s^2}}{\sqrt{s + \frac{1}{s}}} = 0$$
(5)

We can see that the derivative is zero if s = 1. According to Eq. 1, this corresponds to  $\theta = 45^{\circ}$ . Thus, the result obtained numerically is shown to be universal.

#### 16.12 Here is a diagram for this problem:



The following formulas can be developed:

$$\theta = \tan^{-1} \frac{1}{s} \tag{1}$$

$$P = b + 2d\sqrt{1 + s^2} \tag{2}$$

$$A = (b + sd)d\tag{3}$$

Then the following Excel worksheet and Solver application can be set up:

|    | A               | В        | С | D                     | E            | F             | G        | Н           | 1     | J    | K         |
|----|-----------------|----------|---|-----------------------|--------------|---------------|----------|-------------|-------|------|-----------|
| 1  | b               | 1        |   |                       | Solver Par   | ameters       |          |             |       |      | X         |
| 2  | S               | 1        | - |                       |              |               |          | -           |       |      |           |
| 3  | d               | 1        |   |                       | Set Target ( | Cell:         | B\$8 🛛 💽 |             |       |      | Solve     |
| 4  |                 | -        |   |                       | Equal To:    | O Max         | Min      | O Value of: | 0     |      | _         |
| 5  | A               | 2        | < | =(B1+B2*B3)*B3        | By Changin   | n Cells:      | ✓ 1 = 12 | C 7000 000  |       |      | Close     |
| 6  | Agoal           | 100      |   |                       | Ey analight  | 9             |          | -           |       |      |           |
| 7  |                 |          |   |                       | \$B\$1:\$B\$ | 3             |          |             |       | is l |           |
| 8  | Р               | 3.828427 | < | =B1+2*SQRT(1+B2^2)*B3 | Subject to   | the Constrain | its:     |             |       | - r  | Options   |
| 9  |                 |          |   |                       |              | ult a         |          | 100         |       | L    | Options   |
| 10 | angle (radians) | 0.785398 | < | =ATAN(1/B2)           | \$6\$5 = \$6 | іфБ           |          | 3           | Add   |      |           |
| 11 | angle (degrees) | 45       | < | =B10*180/PI()         |              |               |          |             | Chan  | ne ) |           |
| 12 |                 |          |   |                       |              |               |          |             | Gridi | ge j | Reset All |
| 13 |                 |          |   |                       |              |               |          |             | Dele  | ie j |           |
| 14 |                 |          |   |                       |              |               |          | 12          |       | _ (  | Help      |
| 15 |                 |          |   |                       | 10           |               |          |             |       |      |           |

Our goal is to minimize the wetted perimeter by varying the depth, side slope and bottom width. We apply the constraint that the computed area must equal the desired area. The result is

|    | A               | В        | С | D                     |
|----|-----------------|----------|---|-----------------------|
| 1  | b               | 8.773829 |   |                       |
| 2  | S               | 0.577343 |   |                       |
| 3  | d               | 7.598379 |   |                       |
| 4  |                 |          |   |                       |
| 5  | A               | 100      | < | =(B1+B2*B3)*B3        |
| 6  | Agoal           | 100      |   |                       |
| 7  |                 |          |   |                       |
| 8  | P               | 26.32148 | < | =B1+2*SQRT(1+B2*2)*B3 |
| 9  |                 |          |   | 2 (2) (2)             |
| 10 | angle (radians) | 1.047203 | < | =ATAN(1/B2)           |
| 11 | angle (degrees) | 60.0003  | < | =B10*180/PI()         |

Thus, this specific application indicates that a  $60^{\circ}$  angle yields the minimum wetted perimeter.

The verification of whether this result is universal can be attained inductively or deductively. The inductive approach involves trying several different desired areas in conjunction with our solver solution. As long as the desired area is greater than 0, the result for the optimal design will be  $60^{\circ}$ .

The deductive verification involves calculus. First, we can solve Eq. 3 for b and substitute the result into Eq. 2 to give,

$$P = \frac{A}{d} + d\left(2\sqrt{1+s^2} - s\right) \tag{4}$$

If both A and d are constants and s is a variable, the condition for the minimum perimeter is dP/ds = 0. Differentiating Eq. 4 with respect to s and setting the resulting equation to zero,

$$\frac{dP}{ds} = d\left(\frac{2s}{\sqrt{1+s^2}} - 1\right) = 0\tag{4}$$

Therefore, we obtain  $s = 1/\sqrt{3}$ . Using Eq. 1, this corresponds to  $\theta = 60^{\circ}$ .

16.13

$$A_{ends} = 2\pi r^{2}$$

$$A_{side} = 2\pi rh$$

$$A_{total} = A_{ends} + A_{side}$$

$$V_{computed} = \pi r^{2}h$$

 $Cost = F_{ends}A_{ends} + F_{side}A_{side} + F_{coating}A_{coating}$ 

Then the following Excel worksheet and Solver application can be set up:

|    | CostTotal   | ▼ f3      | =SUM( | CostEnd:Cost( | Dp)         |     |                     |               |            |             |                     |     |           |
|----|-------------|-----------|-------|---------------|-------------|-----|---------------------|---------------|------------|-------------|---------------------|-----|-----------|
|    | A           | В         | C     | D             | E           | F   | G                   | Н             |            | J           | K                   | L   | M         |
| 1  | Prob. 16.13 |           |       |               |             | 1   | Salura Da           | matara        |            |             |                     |     |           |
| 2  |             |           |       |               |             |     | Solver Pa           | rameters      |            | 40          |                     |     |           |
| 3  | hside       | 1         | m     | Vdesired      | 10          | m3  | Set Target          | Cell:         | ostTotal 張 | 1           |                     |     | Solve     |
| 4  | dend        | 1         | m     | Vcomputed     | 0.785398163 | m3  | Equal To:           | 0             |            | 0 U-1 C     | lo.                 |     |           |
| 5  |             |           |       |               |             |     | Du Chapair          |               |            | O value or: | 0                   |     | Close     |
| 6  | dend:hside  | 1         | 1     | Aend          | 1.570796327 | m2  | by Changi           | ig cells:     |            |             |                     |     |           |
| 7  | 1           |           |       | Aside         | 3.141592654 | m2  | \$B\$3:\$B\$        | ;4            |            |             | . <u>G</u> ue       | 855 |           |
| 8  | rend        | 0.5       | m     | Atotal        | 4.71238898  |     | Subject to          | the Constrain | sheri      |             | 12                  |     |           |
| 9  |             |           |       |               |             | 1   | D <u>u</u> bject to | une constrail | 1051       |             | - T                 |     | Options   |
| 10 | FEnd        | \$ 200.00 | \$/m2 | CostEnd       | \$ 314.16   |     | Vdesired            | = Vcomputed   |            | 1           | Ad                  | ld  |           |
| 11 | FSide       | \$ 100.00 | \$/m2 | CostSide      | \$ 314.16   |     |                     |               |            |             | Char                |     |           |
| 12 | FCoat       | \$ 50.00  | \$/m2 | CostCoat      | \$ 235.62   |     |                     |               |            |             | <u>C</u> <u>u</u> a | iye | Reset All |
| 13 |             |           |       |               |             | 12  |                     |               |            | 10          | Dele                | ete |           |
| 14 |             |           |       | CostTotal     | \$ 863.94   |     | -                   |               |            |             |                     |     | Help      |
| 15 | 3           |           |       |               |             | - C | A                   |               |            |             |                     |     |           |

which results in the following solution:

|    | A           | В         | C     | D         | E           | F  |
|----|-------------|-----------|-------|-----------|-------------|----|
| 1  | Prob. 16.13 |           |       |           |             | 1  |
| 2  |             |           |       |           |             |    |
| 3  | hside       | 3.282282  | m     | Vdesired  | 10          | m3 |
| 4  | dend        | 1.96955   | m     | Vcomputed | 10          | m3 |
| 5  | 1           |           |       |           |             |    |
| 6  | dend:hside  | 0.600055  |       | Aend      | 6.093321721 | m2 |
| 7  |             |           |       | Aside     | 20.30920276 | m2 |
| 8  | rend        | 0.984775  | m     | Atotal    | 26.40252448 |    |
| 9  | 1           |           |       |           |             |    |
| 10 | FEnd        | \$ 200.00 | \$/m2 | CostEnd   | \$ 1,218.66 |    |
| 11 | FSide       | \$ 100.00 | \$/m2 | CostSide  | \$ 2,030.92 |    |
| 12 | FCoat       | \$ 50.00  | \$/m2 | CostCoat  | \$ 1,320.13 |    |
| 13 |             |           |       |           |             |    |
| 14 |             |           |       | CostTotal | \$ 4,569.71 | 2  |

**16.14** As shown below, Excel Solver gives: x = 0.5, y = 0.8 and  $f_{\min} = -0.85$ .

|                      | A           | В | С | D                                     | E                  | F     | G               | Н | 1     | J                      |
|----------------------|-------------|---|---|---------------------------------------|--------------------|-------|-----------------|---|-------|------------------------|
| 1                    | X           | 1 | 1 | Solver Par                            | ameters            |       |                 |   |       |                        |
| 2<br>3<br>4<br>5     | y<br>f(x,y) |   |   | Set Target<br>Equal To:<br>By Changir | Cell:              | B\$4. | ]<br>○⊻alue of: | 0 |       | <u>S</u> olve<br>Close |
| 6<br>7<br>8<br>9     |             |   |   | \$B\$1:\$B\$<br>Subject to            | 2<br>the Constrair | its:  |                 |   | ss (  | Options                |
| 11<br>12<br>13<br>14 |             |   |   |                                       |                    |       |                 |   | nge ( | Reset All              |



16.15 An Excel spreadsheet can be set up to solve the problem as

|    | A             | В         | С | D       | E   |
|----|---------------|-----------|---|---------|-----|
| 1  | Parameters    | -         |   | Sec. S. |     |
| 2  | c1            | 4         |   | d1      | 1   |
| 3  | c2            | 2         |   | d2      | 10  |
| 4  | Н             | 275       |   | t1      | 0.1 |
| 5  | Р             | 2000      |   | t2      | 1   |
| 6  | E             | 900000    |   |         |     |
| 7  | rho           | 0.0025    |   |         |     |
| 8  | sigmamax      | 550       |   |         |     |
| 9  | 1 36          |           |   |         |     |
| 10 | Decision var  | iables    |   |         |     |
| 11 | t             | 0.5       |   |         |     |
| 12 | d             | 10        |   |         |     |
| 13 | 1             |           |   |         |     |
| 14 | Computed q    | uantities |   | goals:  |     |
| 15 | W             | 10.79922  |   |         |     |
| 16 | 1             | 196.8404  |   |         |     |
| 17 | sigma         | 127.324   | < | 550     |     |
| 18 | sigmab        | 1471.876  |   |         |     |
| 19 | 1.045-0       |           |   |         |     |
| 20 | Objective fur | nction    |   |         |     |
| 21 | C             | 63.1969   |   |         |     |

The formulas are

|    | A            | В                             | С | D      | E   |
|----|--------------|-------------------------------|---|--------|-----|
| 1  | Parameters   |                               |   |        |     |
| 2  | c1           | 4                             |   | d1     | 1   |
| 3  | c2           | 2                             |   | d2     | 10  |
| 4  | H            | 275                           |   | t1     | 0.1 |
| 5  | P            | 2000                          |   | t2     | 1   |
| 6  | E            | 900000                        |   |        |     |
| 7  | rho          | 0.0025                        |   |        |     |
| 8  | sigmamax     | 550                           |   |        |     |
| 9  |              |                               |   |        |     |
| 10 | Decision va  |                               |   |        |     |
| 11 | t            | 0.5                           |   |        |     |
| 12 | d            | 10                            |   |        |     |
| 13 |              | -                             |   |        |     |
| 14 | Computed of  |                               |   | goals: |     |
| 15 | W            | =PI()*B12*B11*B4*B7           |   |        |     |
| 16 | 1            | =PI()/8*B12*B11*(B12*2+B11*2) |   |        |     |
| 17 | sigma        | =B5/PI()/B12/B11              | < | 550    |     |
| 18 | sigmab       | =PI()*B6*B16/B4^2/B12/B11     |   | 1      |     |
| 19 |              |                               |   |        |     |
| 20 | Objective fu |                               |   |        |     |
| 21 | C            | =B2*B15+B3*B12                |   |        |     |

The Solver can be called and set up as

| S <u>e</u> t Target Cell: <b>\$B\$21 </b>                          | Solve                      |
|--------------------------------------------------------------------|----------------------------|
| Equal To: <u>Max</u> O Min <u>V</u> alue of:<br>By Changing Cells: | Close                      |
| \$B\$11:\$B\$12                                                    | Guess                      |
|                                                                    |                            |
| Subject to the Constraints:                                        | <br>Options                |
| Subject to the Constraints:<br>\$B\$11 <= \$E\$5                   | Add                        |
| Subject to the Constraints:           \$B\$11 <= \$E\$5            | Add                        |
| Subject to the Constraints:           \$B\$11 <= \$E\$5            | Add Change                 |
| Subject to the Constraints:       \$B\$11 <= \$E\$5                | Add<br>Change<br>Reset All |

The resulting solution is

|    | A             | В         | С | D         | E   |
|----|---------------|-----------|---|-----------|-----|
| 1  | Parameters    |           |   | Sec. Sec. |     |
| 2  | c1            | 4         |   | d1        | 1   |
| 3  | c2            | 2         |   | d2        | 10  |
| 4  | Н             | 275       |   | t1        | 0.1 |
| 5  | Р             | 2000      |   | t2        | 1   |
| 6  | E             | 900000    |   |           |     |
| 7  | rho           | 0.0025    |   |           |     |
| 8  | sigmamax      | 550       |   |           |     |
| 9  | 1 36          |           |   |           |     |
| 10 | Decision var  | iables    |   |           |     |
| 11 | t             | 0.189207  |   |           |     |
| 12 | d             | 6.117589  |   |           |     |
| 13 |               |           |   |           |     |
| 14 | Computed q    | uantities |   | goals:    |     |
| 15 | W             | 2.5       |   |           |     |
| 16 | 1             | 17.02759  |   |           |     |
| 17 | sigma         | 550       | < | 550       |     |
| 18 | sigmab        | 550       |   |           |     |
| 19 | 1.0224        |           |   |           |     |
| 20 | Objective fur | nction    |   |           |     |
| 21 | C             | 22.23518  |   |           |     |
| 22 |               |           |   |           |     |

**16.16** A plot of the function indicates a minimum at about t = 2.2.



The Excel Solver can be used to determine that a minimum of o = 1.699 occurs at a value of t = 2.2023.



**PROPRIETARY MATERIAL**. © The McGraw-Hill Companies, Inc. All rights reserved. <u>No part of this Manual</u> may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

**16.17** This problem can be solved graphically by using a software package to generate a contour plot of the function. For example, the following plot can be developed with Excel. As can be seen, a minimum occurs at approximately x = 1 and y = 7.



We can use a software package like Excel to determine the maximum precisely as x = 1.034593 and y = 6.64868.

|                            | B3          | -        | <b>f</b> ≈ =7.7+0 | l.15*B1+0.22                                            | 2*B2-0.05*B        | 31^2-0.016* | B2^2-0.007               | *B1*B2 |          |                        |
|----------------------------|-------------|----------|-------------------|---------------------------------------------------------|--------------------|-------------|--------------------------|--------|----------|------------------------|
|                            | A           | В        | С                 | D                                                       | Е                  | F           | G                        | Н      | I.       | J                      |
| 1                          | X           | 1.034593 |                   | Solver Par                                              | ameters            |             |                          |        |          |                        |
| 2<br>3<br>4<br>5<br>6      | у<br>с(х,у) | 8.50895  |                   | S <u>e</u> t Target (<br>Equal To:<br><u>By</u> Changin | Cell: \$           | B\$3 💽      | ]<br>O <u>V</u> alue of: | 0      |          | <u>S</u> olve<br>Close |
| 7<br>8<br>9<br>10          |             |          |                   | \$B\$1:\$B\$2<br>Subject to t                           | 2<br>the Constrain | ts:         |                          |        | 55       | Options                |
| 11<br>12<br>13<br>14<br>15 |             |          |                   |                                                         |                    |             |                          |        | ge<br>te | Reset All              |

16.18 (a) The problem consists of

$$\min P = B + 2 * H$$

Subject to

$$\frac{1}{n}BH\left(\frac{BH}{B+2H}\right)^{2/3}S^{1/2} = Q$$

The problem can be set up and solved with the Excel Solver as in

|    | A          | В        | C         | D            | Е | F                                | G             | Н        | 1                | J              | K                   | L         |
|----|------------|----------|-----------|--------------|---|----------------------------------|---------------|----------|------------------|----------------|---------------------|-----------|
| 1  | Problem 18 | 6.18     |           |              |   | Solver Par                       | ameters       |          |                  |                |                     |           |
| 3  | n<br>S     | 0.03     |           |              |   | S <u>e</u> t Target<br>Equal To: | Cell:         | Min      | )<br>O Value of: | 0              |                     |           |
| 5  | Q          | 1        |           |              |   | By Changin                       | ng Cells:     |          |                  |                |                     | Close     |
| 7  | В          | 2.13514  |           |              |   | \$B\$7:\$B\$                     | 8             |          |                  |                | ss                  |           |
| 8  | Н          | 1.067614 |           |              |   | Subject to                       | the Constrain | its:     |                  |                |                     | Ontines   |
| 9  | B/H        | 1.999917 |           |              |   |                                  |               | 696.<br> | 100              | 1              |                     | Options   |
| 10 |            |          |           |              |   | Qmanning                         | 1 = Q         |          | 1                | <u>A</u> de    |                     |           |
| 11 | Ac         | 2.279507 | =B*H      |              |   |                                  |               |          |                  | Chan           | ine ]               |           |
| 12 | P          | 4.270369 | =B+2*H    |              |   |                                  |               |          |                  | <u>C</u> ridin | ι <mark>ge</mark> Γ | Reset All |
| 13 | R          | 0.533796 | =Ac/P     |              |   |                                  |               |          | ~                | Dele           | te                  |           |
| 14 |            |          |           |              |   |                                  |               |          | 100              |                | _ (                 | Help      |
| 15 | Qmanning   | 1        | =1/n*Ac*R | ^(2/3)*S^0.5 |   | 19                               |               |          |                  |                |                     |           |

As can be seen, the result shows that the dimensions for the minimum wetted perimeter correspond to having the bottom width that is twice the length of each vertical side.

(b) Now we can redo the problem as a cost minimization:

 $\min C = 100A_{c} + 50P$ 

Subject to

$$\frac{1}{n}BH\left(\frac{BH}{B+2H}\right)^{2/3}S^{1/2} = Q$$

The problem can be set up and solved with the Excel Solver as in

| Ĩ. | Cost       | -        | £ =100*A  | :+50*P       |   |                     |               |         |             |              |         |           |
|----|------------|----------|-----------|--------------|---|---------------------|---------------|---------|-------------|--------------|---------|-----------|
|    | A          | В        | С         | D            | E | F                   | G             | Н       | Î           | J            | K       | Ĺ         |
| 1  | Problem 18 | 5.18     |           |              |   | Solver Pa           | rameters      |         |             |              |         |           |
| 2  |            |          |           |              |   |                     |               |         |             |              |         |           |
| 3  | n          | 0.03     |           |              |   | S <u>e</u> t Target | Cell:         | ost 💦 💽 | )           |              |         | Solve     |
| 4  | S          | 0.0004   |           |              |   | Equal To:           | O Max         | Min     | O Value of: | 0            |         |           |
| 5  | Q          | 1        |           |              |   | By Changi           | na Cells:     | 0.00    | O Targo ou  | 1            | _       | Close     |
| 6  |            |          |           |              |   |                     | 18 A. F. 1990 |         | -           | -            |         |           |
| 7  | В          | 2.135512 | 2.000614  |              |   | \$B\$7:\$B\$        | 8             |         |             |              | ss      |           |
| 8  | Н          | 1.067429 |           |              |   | Subject to          | the Constrain | lts:    |             |              |         | Options   |
| 9  | B/H        | 2.000614 |           |              |   | Omanning            | 0             |         | 102         |              | -       |           |
| 10 |            |          |           |              |   | Qinanining          | 1 = Q         |         |             | Add          |         |           |
| 11 | Ac         | 2.279507 | =B*H      |              |   |                     |               |         |             | Chan         | ine     |           |
| 12 | Р          | 4.27037  | =B+2*H    |              |   |                     |               |         |             |              | <u></u> | Reset All |
| 13 | R          | 0.533796 | =Ac/P     |              |   |                     |               |         | V           | <u>D</u> ele | te      |           |
| 14 |            |          |           |              |   |                     |               |         |             |              |         | Help      |
| 15 | Cost       | 441.4692 |           |              |   | 1                   |               |         |             |              |         |           |
| 16 |            | -        |           |              |   | 645 I               |               |         |             |              |         |           |
| 17 | Qmanning   | 1        | =1/n*Ac*R | ^(2/3)*S^0.5 |   |                     |               |         |             |              |         |           |

Very interestingly, the result is identical to that obtained when cost was not an issue!!!

(c) The constraint can be rewritten as

$$\frac{(BH)^{5/2}}{B+2H} = \left(\frac{nQ}{S^{1/2}}\right)^{3/2} = \text{constant}$$

 $BH = \text{constant} \times (B + 2H)^{2/5}$ 

Therefore, both  $A_c$  and P are minimized simultaneously. This is great, because the excavation costs will be proportional to the cross-sectional area. Hence, by having the bottom width twice the length of each vertical side, we will minimize both excavation and lining costs simultaneously!!!

16.19 Using Excel Solver,

|    | A      | В        | С    | D | E           | F     | G                | Н                  |          | J          | К       | L   | M         |
|----|--------|----------|------|---|-------------|-------|------------------|--------------------|----------|------------|---------|-----|-----------|
| 1  | P      | 3.00E+06 | Ν    |   |             |       | Solver           | Parameters         |          |            |         |     |           |
| 2  | E      | 2.00E+11 | N/m2 |   |             |       | Sources          | ranameters         |          |            |         | 212 |           |
| 3  | Vgoal  | 0.075    | m3   |   |             |       | S <u>e</u> t Tar | rget Cell: P       | Ye [     | <u>.</u>   |         | ſ   | Solve     |
| 4  | 1      |          |      | - |             |       | Equal T          | 0: O Max           | O Min    | Value of:  | 3000000 |     |           |
| 5  | L      | 4.14267  | m    |   |             |       | By Cha           | anaina Cells:      | <u> </u> | O.Tage 611 | 11      |     | Close     |
| 6  | radius | 0.075913 | m    |   |             |       |                  |                    |          | (=         | 1       |     |           |
| 7  |        |          |      |   |             |       | \$B\$5           | :\$B\$6            |          |            |         | 55  |           |
| 8  | 1      | 2.61E-05 | m4   | < | =PI()*radiu | s^4/4 | Subjec           | t to the Constrain | nts:     |            |         | 6   | Options   |
| 9  |        |          |      |   |             |       | Volum            | e – Vacel          | esetter. | 102        |         |     | options   |
| 10 | Volume | 0.075    | m3   | < | =PI()*radiu | s^2*L | Voiun            | ie – vydai         |          |            | Had     |     |           |
| 11 | -      |          |      |   |             |       |                  |                    |          |            | Chan    | ae  |           |
| 12 | Pc     | 3000000  | Ν    | < | =PI()*2*E*I | /L^2  |                  |                    |          |            |         |     | Reset All |
| 13 | ,      |          | -    |   |             |       |                  |                    |          | V          | Dele    | te  |           |
| 14 |        |          |      |   |             |       |                  |                    |          |            | -       |     | Help      |
| 15 |        |          |      | 1 |             |       |                  |                    |          |            |         |     |           |

An alternative solution can be developed by maximizing L subject to Volume  $\leq 0.075 \text{ m}^3$  and  $P_c \geq 3,000,000 \text{ N},$ 

|    | A      | В        | С    | D | E            | F     | G         | Н                       |          | J         | K       | L  | M         |
|----|--------|----------|------|---|--------------|-------|-----------|-------------------------|----------|-----------|---------|----|-----------|
| 1  | P      | 3.00E+06 | N    |   |              |       | Solver    | Darameters              |          |           |         |    |           |
| 2  | E      | 2.00E+11 | N/m2 |   |              |       | 3010-51   | Fuldimeters             | 20       | 4.55.51   |         |    |           |
| 3  | Vgoal  | 0.075    | m3   |   |              |       | Set Targ  | get Cell:               | . 6      |           |         |    | Solve     |
| 4  | 10     |          |      |   |              |       | Equal To  | n: May                  | Min      | Value of: | 3000000 |    |           |
| 5  | L      | 4.14267  | m    |   |              |       | By Cha    | naina Cells:            | 0.00     |           |         |    | Close     |
| 6  | radius | 0.075913 | m    |   |              |       | by chia   | riging color            |          | -         | -       |    |           |
| 7  |        |          |      |   |              |       | \$B\$5::  | \$B\$6                  |          |           |         | 55 |           |
| 8  | 1      | 2.61E-05 | m4   | < | =PI()*radiu: | s^4/4 | Subject   | to the Constrain        | nts:     |           |         |    | Ontions   |
| 9  |        |          |      |   |              |       | - /       | 0000000                 | 2004 - C | 100       |         |    | Options   |
| 10 | Volume | 0.075    | m3   | < | =PI()*radiu: | s^2*L | PC >=     | : 3000000<br>e <= Vooal |          | -         | Add     |    |           |
| 11 |        |          |      |   |              |       | , c.d.iii |                         |          |           | Chan    | ne |           |
| 12 | Pc     | 3000000  | N    | < | =PI()^2*E*I. | /L^2  |           |                         |          |           |         | 90 | Reset All |
| 13 |        |          |      |   |              |       |           |                         |          |           | Dele    | te |           |
| 14 |        |          |      |   |              |       |           |                         |          |           |         |    | Help      |
| 15 |        |          |      |   |              |       |           |                         |          |           |         |    |           |

**16.20** The total flow in the river:  $F = 2 \times 10^6 \text{ m}^3/\text{d}.$ 

The flow into the channels:

 $f_1 + f_2 \le 0.7F = 1.4 \times 10^6 \text{ m}^3/\text{d}$ 

Minimum channel flows for navigation:

 $f_1 \ge 0.3 \times 10^6 \text{ m}^3/\text{d}$ 

or

**PROPRIETARY MATERIAL.** © The McGraw-Hill Companies, Inc. All rights reserved. <u>No part of this Manual</u> may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$$f_2 \ge 0.2 \times 10^6 \text{ m}^3/\text{d}$$

Political constraints:

$$\frac{\left|f_1 - f_2\right|}{f_1 + f_2} \le 0.4$$

leads to

$$f_2 \ge \frac{3}{7} f_1$$
$$f_2 \le \frac{7}{3} f_1$$

Maintenance cost per year,  $C \le \$1.8 \times 10^6$ 

Channel 1:  $C_1 = 1.1f_1$ Channel 2:  $C_2 = 1.4f_2$ 

leads to

 $1.1f_1 + 1.4f_2 \le 1.8 \times 10^6$ 

Power revenue (revenue per year):

Channel 1:  $r_{p1} = 4f_1$ Channel 2:  $r_{p2} = 3f_2$ 

Irrigation revenue (revenue per year):

Channel 1: loss,  $\alpha_1 = 0.3$ value/yr:  $i_1 = 3.2(1 - \alpha) f_1 = 2.24 f_1$ 

Channel 2: loss,  $\alpha_2 = 0.2$ value/yr:  $i_2 = 3.2(1 - \alpha) f_2 = 2.56 f_2$ 

Net revenue = Revenue - losses

 $P = 4f_1 + 3f_2 + 2.24f_1 + 2.56f_2 - 1.1f_1 - 1.4f_2$ 

 $P = 5.14f_1 + 4.16f_2$ 

Therefore, the problem is formulated as

Decision variables:  $f_1$ : flow in channel 1  $f_2$ : flow in channel 2

Maximize:  $P = 5.14f_1 + 4.16f_2$ 

Subject to

| $f_1 + f_2 \le 1.4 \times 10^6$       | channel flow           |
|---------------------------------------|------------------------|
| $1.1f_1 + 1.4f_2 \le 1.8 \times 10^6$ | maintenance            |
| $0.43f_1 - f_2 \le 0$                 | political constraint 1 |
| $-2.33f_1 + f_2 \le 0$                | political constraint 2 |
| $f_1 \ge 0.3 \times 10^6$             | minimum channel flow 1 |
| $f_2 \ge 0.2 \times 10^6$             | minimum channel flow 2 |

The problem can then be set up and solved with a tool such as Excel:

|    | A      | В         | C         | D     | E          |
|----|--------|-----------|-----------|-------|------------|
| 1  | 8      | Channel 1 | Channel 2 | total | constraint |
| 2  | Flow   | 0         | 0         |       |            |
| 3  |        | 1         | 1         | 0     | 1.40E+06   |
| 4  |        | 1.1       | 1.4       | 0     | 1.80E+06   |
| 5  |        | 0.43      | -1        | 0     | 0          |
| 6  |        | -2.33     | 1         | 0     | 0          |
| 7  |        | 1         |           | 0     | 3.00E+05   |
| 8  | 1      |           | 1         | 0     | 2.00E+05   |
| 9  | 1      |           |           |       |            |
| 10 | Profit | 5.14      | 4.16      | 0     |            |

The cell formulas are

| 1  | A      | В         | C         | D                  | E          |
|----|--------|-----------|-----------|--------------------|------------|
| 1  | -      | Channel 1 | Channel 2 | total              | constraint |
| 2  | Flow   | 0         | 0         |                    |            |
| 3  |        | 1         | 1         | =B3*B\$2+C3*C\$2   | 1400000    |
| 4  |        | 1.1       | 1.4       | =B4*B\$2+C4*C\$2   | 1800000    |
| 5  |        | 0.43      | -1        | =B5*B\$2+C5*C\$2   | 0          |
| 6  |        | -2.33     | 1         | =B6*B\$2+C6*C\$2   | 0          |
| 7  |        | 1         |           | =B7*B\$2+C7*C\$2   | 300000     |
| 8  |        |           | 1         | =B8*B\$2+C8*C\$2   | 200000     |
| 9  |        |           |           |                    |            |
| 10 | Profit | 5.14      | 4.16      | =B10*B\$2+C10*C\$2 |            |

The Excel Solver can be invoked as

| Set Target Cell: \$D\$10                                        | <u>S</u> olve                   |
|-----------------------------------------------------------------|---------------------------------|
| Equal To: <u>Max</u> Min <u>Value of:</u><br>By Changing Cells: | Close                           |
| \$B\$2:\$C\$2                                                   | Guess                           |
| Anderska (TE                                                    | Guess                           |
| Subject to the Constraints:                                     | Quess Options                   |
| Subject to the Constraints:<br>\$D\$3 <= \$E\$3                 | Add                             |
| \$Ubject to the Constraints:           \$D\$3 <= \$E\$3         | <u>A</u> dd                     |
| \$ubject to the Constraints:           \$ubj4 <= \$E\$3         | <u>Add</u>                      |
| \$U\$piect to the Constraints:           \$D\$3 <= \$E\$3       | Add Options<br>Change Reset All |

#### The resulting solution is

| A      | В                   | C                                                                                | D                                                                                                                                                                                                                                                                                                                                                  | Е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------|---------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8<br>  | Channel 1           | Channel 2                                                                        | total                                                                                                                                                                                                                                                                                                                                              | constraint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Flow   | 979021              | 420979                                                                           |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | 1                   | 1                                                                                | 1400000                                                                                                                                                                                                                                                                                                                                            | 1.40E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | 1.1                 | 1.4                                                                              | 1666294                                                                                                                                                                                                                                                                                                                                            | 1.80E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | 0.43                | -1                                                                               | 0                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | -2.33               | 1                                                                                | -1860140                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | 1                   |                                                                                  | 979021                                                                                                                                                                                                                                                                                                                                             | 3.00E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10 A   |                     | 1                                                                                | 420979                                                                                                                                                                                                                                                                                                                                             | 2.00E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1      |                     |                                                                                  |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Profit | 5.14                | 4.16                                                                             | 6783441                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | A<br>Flow<br>Profit | A B<br>Channel 1<br>Flow 979021<br>1<br>1.1<br>0.43<br>-2.33<br>1<br>Profit 5.14 | A         B         C           Channel 1         Channel 2         Channel 2           Flow         979021         420979           1         1         1           1         1.1         1.4           0.43         -1         -1           -2.33         1         1           1         1         1           Profit         5.14         4.16 | A         B         C         D           Channel 1         Channel 2         total           Flow         979021         420979           1         1         1400000           1.1         1.4         1666294           0.43         -1         0           -2.33         1         -1860140           1         1         979021           1         1         1400000           1.1         1.4         1666294           0.43         -1         0           -2.33         1         -1860140           1         1         979021         979021           1         1         1         420979           Profit         5.14         4.16         6783441 |

16.21 The weight of the truss is equal to

$$W = \rho(L_1A_c + L_2A_t + L_3A_c)$$

where  $\rho = \text{density}$ ,  $L_i = \text{length of member } i$ ,  $A_c = \text{cross-sectional area of compression member,}$ and  $A_t = \text{cross-sectional area of tension member}$ . The lengths of the 3 members can be determined as  $L_1 = 43.3013$ ,  $L_2 = 50$ , and  $L_3 = 25$ . Therefore, the solution can be formulated as a linear programming problem as

Minimize:  $W = 3.5(43.3013A_c + 50A_t + 25A_c)$ 

subject to

$$A_c \ge 50$$
$$A_c \ge 43.3$$

The solution can be developed in Excel using the Solver tool,

|    | B4     | <b>*</b> 3 | <b>f</b> ∡ =3.5*i | (43.3013*Ac+          | -50*At+25*/  | Ac)      |           |       |      |           |
|----|--------|------------|-------------------|-----------------------|--------------|----------|-----------|-------|------|-----------|
|    | A      | В          | С                 | D                     | E            | F        | G         | Н     | 1    | J         |
| 1  | Ac     | 50         |                   | Solver Par            | ameters      |          |           |       |      |           |
| 2  | At     | 43.3       |                   | Source i van          | ametera      |          |           |       | 1.2  |           |
| 3  |        |            |                   | S <u>e</u> t Target ( | Cell: \$8    | 3\$4 🛛 🔣 |           |       | 1    | Solve     |
| 4  | weight | 19530.23   |                   | Equal To:             | O May        | Min (    | Walue of: | 0     |      |           |
| 5  |        | 2          | 6                 | By Changin            | a Cells:     |          |           |       |      | Close     |
| 6  |        |            |                   |                       | P 70001      |          | -         | -     | _    |           |
| 7  |        |            |                   | \$B\$1:\$B\$2         | 2            |          |           |       | s    |           |
| 8  |        |            |                   | Subject to t          | he Constrain | ts:      |           |       | 1    | Options   |
| 9  |        |            |                   | $a_c > -50$           |              |          | 1.22      | 1     |      |           |
| 10 |        |            |                   | At >= 30<br>At >= 43. | 3            |          | -         | AOO   |      |           |
| 11 |        |            |                   |                       |              |          |           | Chane | je l |           |
| 12 | 0      |            |                   |                       |              |          |           |       |      | Reset All |
| 13 |        |            |                   |                       |              |          | ~         | Delet | e    |           |
| 14 | -      |            |                   | L                     |              |          |           |       |      | Help      |
| 15 |        |            |                   |                       |              |          |           |       |      | 0         |

16.22 The solution can be developed in Excel using the Solver tool,

|    | B7  | -        | £ <mark>√ =1/(4*</mark> F | 'PI()*e0)*q*QQ*B6/(B6^2+rad^2)^1.5 |               |        |              |              |     |              |  |  |  |
|----|-----|----------|---------------------------|------------------------------------|---------------|--------|--------------|--------------|-----|--------------|--|--|--|
|    | A   | В        | С                         | D                                  | E             | F      | G            | Н            | 1   | J            |  |  |  |
| 1  | eO  | 8.85E-12 |                           | Solver Dar                         | amotore       |        |              |              |     |              |  |  |  |
| 2  | QQ  | 2.00E-05 |                           | Solver Par                         | unieters      |        |              |              |     |              |  |  |  |
| 3  | q   | 2.00E-05 |                           | Set Target (                       | Cell: \$      | B\$7 💽 | 1            |              |     | Solve        |  |  |  |
| 4  | rad | 0.90     |                           | Equal To:                          | (Marcil       | O Min  | C University | 0            |     |              |  |  |  |
| 5  |     |          |                           | Pu Chapain                         |               | O MI⊡  |              | 18           |     | Close        |  |  |  |
| 6  | x   | 0.636396 |                           | by changin                         | y cells:      |        |              | _            |     |              |  |  |  |
| 7  | F   | 1.70911  |                           | \$B\$6                             |               |        |              | Gue:         | ss  |              |  |  |  |
| 8  |     |          | (                         | Subject to I                       | the Constrain | ts:    |              |              |     |              |  |  |  |
| 9  |     |          |                           |                                    |               |        |              |              |     |              |  |  |  |
| 10 |     |          |                           |                                    |               |        | 2            | <u>A</u> de  | ±   |              |  |  |  |
| 11 |     |          |                           |                                    |               |        |              | Chan         |     |              |  |  |  |
| 12 |     |          |                           |                                    |               |        |              | <u>C</u> nan | ige | Reset All    |  |  |  |
| 13 |     |          |                           |                                    |               |        | 12           | Dele         | te  |              |  |  |  |
| 14 |     |          |                           |                                    |               |        | 12           |              | _   | <u>H</u> elp |  |  |  |
| 15 |     |          |                           |                                    |               |        |              |              |     |              |  |  |  |

16.23 The problem can be formulated as

Minimize

 $C = 2p_1 + 10p_2 + 2$ 

subject to

$$0.6p_1 + 0.4p_2 \ge 30$$
  
$$p_1 \le 42$$

Using the Excel Solver:

| 2 | 6 |  |
|---|---|--|

|    | A                | В    | С | D              | E          | F  | G            | Н              | 1             | J        | K    | L   | M         |
|----|------------------|------|---|----------------|------------|----|--------------|----------------|---------------|----------|------|-----|-----------|
| 1  | Individual power |      |   |                | Constraint |    | Solver Par   | ameters        |               |          |      |     |           |
| 3  | p1               | 42   |   |                | <          | 42 | Set Target   | Cell:          | B\$13         | 1        |      |     | Solve     |
| 4  | p2               | 12   |   |                |            |    | Equal To:    | O M            | () Min        | Value of | 0    |     | Fourte    |
| 5  | Losses           |      |   |                |            |    | Ry Chapgin   |                | € MI <u>I</u> |          |      | -   | Close     |
| 6  | L1               | 9.6  | < | =0.2*B3+0.1*B4 |            |    | by changin   | ig cells,      |               |          |      |     |           |
| 7  | L2               | 14.4 | < | =0.2*B3+0.5*B4 |            |    | \$B\$3:\$B\$ | 4              |               |          |      | ss  |           |
| 8  | Total power      | 30   | < |                | =          | 30 | Subject to   | the Constrain  | its:          |          |      |     | Ontions   |
| 9  |                  |      |   |                |            |    |              | Le Lo          |               |          |      | _   | Options   |
| 10 | Costs            |      |   |                |            |    | \$B\$3 <= :  | \$F\$3<br>#F#8 |               | 1        | Ad   | d   |           |
| 11 | F1               | 86   | < | =2*B3+2        | 1          |    | \$D\$0 >= .  | рі ро          |               |          | Chan |     |           |
| 12 | F2               | 120  | < | =10*B4         |            |    |              |                |               |          |      | ige | Reset All |
| 13 | Total cost       | 206  | < | =B11+B12       |            |    |              |                |               | K        | Dele | te  |           |
| 14 |                  |      | 8 |                |            |    |              |                |               |          |      | _   | Help      |
| 15 |                  |      |   |                |            |    | <u></u>      |                |               |          |      |     |           |

**16.24** This is a trick question. Because of the presence of (1 - s) in the denominator, the function will experience a division by zero at the maximum. This can be rectified by merely canceling the (1 - s) terms in the numerator and denominator to give

$$T = \frac{15s}{4s^2 - 3s + 4}$$

Any of the optimizers described in this section can then be used to determine that the maximum of T = 3 occurs at s = 1.

16.25 (a) An LP formulation for this problem can be set up as

Maximize  $P = 500x_1 + 400x_2$ 

subject to

$$300x_1 + 400x_2 \le 127,000$$
  
$$20x_1 + 10x_2 \le 4,270$$
  
$$x_1, x_2 \ge 0$$

An Excel spreadsheet can be set up to solve the problem as

|    | A       | В                 | С                | D            | E | F          | G                        | Н              | 1          | J        | K      | L     | M         |
|----|---------|-------------------|------------------|--------------|---|------------|--------------------------|----------------|------------|----------|--------|-------|-----------|
| 1  | Device  | Capital (\$/unit) | Labor (hrs/unit) | Profit       |   |            | Solver Da                | amotore        |            |          |        |       |           |
| 2  | Scanner | 300               | 20               | 500          |   | 1          | JUIVET Fa                | ameters        |            |          |        |       |           |
| 3  | Printer | 400               | 10               | 400          |   |            | Set Target               | Cell:          | :B\$11 📃 💽 | ]        |        |       | Solve     |
| 4  |         |                   |                  |              |   |            | Equal To:                | () May         | Min        | Value of | 0      |       |           |
| 5  | Devise1 | 88                |                  |              |   | 1          | By Changi                | na Celler      |            |          |        | _     | Close     |
| 6  | Devise2 | 251               |                  |              |   |            | By chongi                | ig color       |            | _        | -      |       |           |
| 7  |         |                   |                  |              |   | Constraint | \$B\$5:\$B\$             | 6              |            |          |        | ss    |           |
| 8  | Capital | 126800            | <                | =B2*B5+B3*B6 | < | 127000     | Subject to               | the Constrain  | hts:       |          |        |       | Continue  |
| 9  | Labor   | 4270              | <                | =C2*B5+C3*B6 | < | 4270       | Links                    |                |            |          | -      |       | Options   |
| 10 |         |                   |                  |              |   | 1          | \$B\$5 = IF<br>\$B\$5 \- | teger<br>0     |            | 3        | Ad     | d     |           |
| 11 | Profit  | 144400            | <                | =D2*B5+D3*B6 |   |            | \$B\$6 = in              | teger          |            |          | Char   |       |           |
| 12 |         |                   |                  |              |   |            | \$B\$6 >=                | 0              |            |          | Ciridi | ige j | Reset All |
| 13 |         |                   |                  |              |   |            | \$B\$8 <=                | \$F\$8<br>#E#0 |            | -        | Dele   | te    |           |
| 14 |         |                   |                  |              |   |            | \$U\$9 <-                | p1 p2          |            |          |        |       | Help      |
| 15 |         |                   |                  |              |   | 1          | 36                       |                |            |          |        | 9     |           |

(b) This problem can be formulated as

Maximize  $P = 500x_1 + (400 - x_2)x_2$ 

**PROPRIETARY MATERIAL.** © The McGraw-Hill Companies, Inc. All rights reserved. <u>No part of this Manual</u> may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

subject to

$$300x_1 + 400x_2 \le 127,000$$
$$20x_1 + 10x_2 \le 4,270$$
$$x_1, x_2 \ge 0$$

An Excel spreadsheet can be set up to solve the problem as

|    | A       | В                 | С                | D            | E | F          | G                     | Н              | 1       | J        | K          | L   | M               |
|----|---------|-------------------|------------------|--------------|---|------------|-----------------------|----------------|---------|----------|------------|-----|-----------------|
| 1  | Device  | Capital (\$/unit) | Labor (hrs/unit) | Profit       |   |            | Solver Da             | ramotore       |         |          |            |     |                 |
| 2  | Scanner | 300               | 20               | 500          |   |            | Joiver Pa             | Tumeters       |         |          |            |     |                 |
| З  | Printer | 400               | 10               | 325          | < | =400-B6    | S <u>e</u> t Target   | Cell:          | 3\$11 📑 |          |            |     | Solve           |
| 4  |         |                   |                  |              |   |            | Equal To:             | May            | O Min   | Value of | 0          |     |                 |
| 5  | Devise1 | 176               |                  |              |   |            | By Changin            |                | O MIL   |          |            | -   | Close           |
| 6  | Devise2 | 75                |                  |              |   |            | By cridingin          | ig color       |         |          |            |     |                 |
| 7  |         |                   |                  |              |   | Constraint | \$B\$5:\$B\$          | 6              |         |          | Gue        | 55  |                 |
| 8  | Capital | 82800             | <                | =B2*B5+B3*B6 | < | 127000     | Subject to            | the Constraint | s:      |          |            |     | Continue        |
| 9  | Labor   | 4270              | <                | =C2*B5+C3*B6 | < | 4270       |                       |                |         |          | -          |     | Options         |
| 10 |         |                   |                  |              |   |            | \$B\$5 = in<br>#P#5 > | iteger<br>0    |         |          | <u>A</u> d |     |                 |
| 11 | Profit  | 112375            | <                | =D2*B5+D3*B6 |   |            | \$B\$6 = in           | teger          |         |          | Char       |     |                 |
| 12 |         |                   |                  |              |   |            | \$B\$6 >=             | 0              |         |          | L Gridi    | ige | Reset All       |
| 13 |         |                   |                  |              |   |            | \$B\$8 <=             | \$F\$8         |         |          | Dele       | te  |                 |
| 14 |         |                   |                  |              |   |            | \$0\$9 <=             | \$F\$3         |         |          |            |     | [ <u>H</u> elp] |
| 15 |         |                   |                  |              |   |            | 15                    |                |         |          |            |     |                 |

16.26 An LP formulation for this problem can be set up as

Decision variables:  $x_{ri}$  = chips produced in regular time for month i $x_{oi}$  = chips produced in overtime for month i $x_{si}$  = chips stored for month i

Minimize  $C = 100x_{r1} + 100x_{r2} + 120x_{r3} + 110x_{o1} + 120x_{o2} + 130x_{o3} + 5x_{s1} + 5x_{s2}$ 

subject to

$$\begin{aligned} x_{r1} + x_{o1} - x_{s1} \ge 1,000 \\ x_{s1} + x_{r2} + x_{o2} - x_{s2} \ge 2,500 \\ x_{s2} + x_{r3} + x_{o3} \ge 2,200 \\ 1.5x_{r1} \le 2,400 \\ 1.5x_{r2} \le 2,400 \\ 1.5x_{r3} \le 2,400 \\ 1.5x_{o1} \le 720 \\ 1.5x_{o2} \le 720 \\ 1.5x_{o3} \le 720 \\ x_{r1}, x_{r2}, x_{r3}, x_{o1}, x_{o2}, x_{o3}, x_{s1}, x_{s2} \ge 0 \end{aligned}$$

An Excel spreadsheet can be set up to solve the problem as

|    | B19 <b>▼</b> <i>f</i> <b>x</b> =B3*B10 | I+C3*B11 | +D3*B12+ | -B4*B13+C | 4*B14+D4 | *B15+B7*    | B16+B7*B1      | 7        |             |        |         |       |      |           |
|----|----------------------------------------|----------|----------|-----------|----------|-------------|----------------|----------|-------------|--------|---------|-------|------|-----------|
|    | A                                      | В        | С        | D         | E        | F           | G              | Н        | I.I.        |        | J       |       | <    | L         |
| 1  |                                        | Month 1  | Month 2  | Month 3   | -        | Salvar Da   | ramotore       |          |             |        |         |       |      |           |
| 2  | Chips required                         | 1000     | 2500     | 2200      | _        | SUIVEI Pa   | in dimeters    |          |             |        |         |       |      |           |
| З  | Cost regular time (\$/chip)            | 100      | 100      | 120       |          | Set Target  | : Cell:        | B\$19    | <b>6.</b> ] |        |         |       | ſ    | Solve     |
| 4  | Cost overtime (\$/chip)                | 110      | 120      | 130       |          | Equal To:   | O Mary         | (Marine) |             | 6 .    | 0       |       | 5    |           |
| 5  | Regular operation time (hrs)           | 2400     | 2400     | 2400      |          | -By Chang   |                |          |             | 3 01 1 |         |       |      | Close     |
| 6  | Overtime (hrs)                         | 720      | 720      | 720       |          | by criary   | ing cells,     |          |             | _      |         |       |      |           |
| 7  | Storage cost                           | 5        |          |           |          | \$B\$10:\$I | B\$17          |          |             |        | G       | uess  |      |           |
| 8  | Production time                        | 1.5      |          | 1         |          | Subject to  | the Constrai   | ate:     |             |        | 2001 AC |       | - 6  |           |
| 9  |                                        |          |          |           |          |             | o cho conseren | icon.    |             | -      |         |       | L    | Options   |
| 10 | Regular time production month 1        | 1600     |          |           |          | \$C\$22 >   | = \$E\$22      |          |             | ^      |         | Add   |      |           |
| 11 | Regular time production month 2        | 1600     |          |           |          | \$C\$24 >   | = \$E\$24      |          |             |        | CC      |       |      |           |
| 12 | Regular time production month 3        | 1600     |          |           |          | \$C\$25 <   | = \$E\$25      |          |             |        |         | lange | ſ    | Reset All |
| 13 | Overtime production month 1            | 480      |          | 1         |          | \$C\$26 <   | = \$E\$26      |          |             | -      | D       | elete | L    |           |
| 14 | Overtime production month 2            | 420      |          |           |          | \$C\$27 <   | .= \$E\$27     |          |             | ((20)  |         |       |      | Help      |
| 15 | Overtime production month 3            | 0        |          |           |          | ·           |                |          |             |        |         |       | -110 |           |
| 16 | Chips in storage month 1               | 1080     |          | 1         |          |             |                |          |             |        |         |       |      |           |
| 17 | Chips in storage month 2               | 600      |          |           |          |             |                |          |             |        |         |       |      |           |
| 18 | 5                                      |          |          |           |          |             |                |          |             |        |         |       |      |           |
| 19 | Cost                                   | 623600   |          |           |          |             |                |          |             |        |         |       |      |           |
| 20 |                                        | (a       |          |           |          |             |                |          |             |        |         |       |      |           |
| 21 | Constraints                            |          |          |           |          |             |                |          |             |        |         |       |      |           |
| 22 | =B10+B13-B16                           | >        | 1000     | Ŧ         | 1000     |             |                |          |             |        |         |       |      |           |
| 23 | =B16+B11+B14-B17                       | >        | 2500     | =         | 2500     |             |                |          |             |        |         |       |      |           |
| 24 | =B17+B12+B15                           | >        | 2200     | 1 = 1     | 2200     |             | 1              | 1        | 1           | 1      |         | 1     |      | 1         |
| 25 | =B8*B10                                | >        | 2400     | <=        | 2400     |             |                |          |             |        |         |       |      |           |
| 26 | =B8*B11                                | >        | 2400     | <=        | 2400     |             |                |          |             |        |         |       |      |           |
| 27 | =B8*B12                                | >        | 2400     | <=        | 2400     |             |                |          |             |        |         |       |      |           |
| 28 | =B8*B13                                | >        | 720      | <=        | 720      |             |                |          |             |        |         |       |      |           |
| 29 | =B8*B14                                | >        | 630      | <=        | 720      |             |                |          |             |        |         |       |      |           |
| 30 | =B8*B15                                | >        | 0        | <=        | 720      |             |                |          |             |        |         |       |      |           |
| 31 | =B16                                   | >        | 1080     | <=        | 2080     | <           | =B10+B1        | 3        |             |        |         |       |      |           |
| 32 | =B17                                   | >        | 600      | <=        | 3100     | <           | =B11+B1        | 4+B16    | 1           | 1      |         | 1     |      | 1         |

Note that before depressing the Solve button, the Options button should be depressed and the following boxes should be selected: "Assume Linear Model" and "Assume Non-Negative."

| olver Option         | 5                |                               |  |  |
|----------------------|------------------|-------------------------------|--|--|
| 4ax <u>T</u> ime:    | 100 seconds      | ОК                            |  |  |
| erations:            | 100              | Cancel                        |  |  |
| recision:            | 0.000001         | Load Model                    |  |  |
| ol <u>e</u> rance:   | 5 %              | Save Model                    |  |  |
| on <u>v</u> ergence: | 0.0001           | Help                          |  |  |
| Assume Line          | ar <u>M</u> odel | se Automatic Scaling          |  |  |
| Assume Non           | -Negative 📃 S    | how Iteration <u>R</u> esults |  |  |
| stimates             | Derivatives      | Search                        |  |  |
| Tangent              | Eorward          | Newton                        |  |  |
|                      | O Central        | Conjugate                     |  |  |

16.27 A tool such as the Excel Solver can be used to determine the solution as

|                            | B5                                                                                                                        | -                    | <b>∱</b> =0.01*s                                     | =0.01*sigma*B4^2+0.95/sigma*(VV/B4)^2 |            |  |                 |            |                        |  |  |  |  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------|---------------------------------------|------------|--|-----------------|------------|------------------------|--|--|--|--|
|                            | A                                                                                                                         | В                    | С                                                    | C D E F G H                           |            |  |                 |            |                        |  |  |  |  |
| 1 2                        | sigma<br>W                                                                                                                | 0.6                  | Solver Pa                                            | rameters                              |            |  |                 |            |                        |  |  |  |  |
| 3<br>4<br>5<br>6           | V<br>D                                                                                                                    | 509.8181<br>3118.974 | S <u>e</u> t Target<br>Equal To:<br><u>By</u> Changi | Cell: [<br>O <u>M</u> ax<br>ng Cells: | \$B\$5 🚺 📑 |  | . 0             |            | <u>S</u> olve<br>Close |  |  |  |  |
| 7<br>8<br>9<br>10          |                                                                                                                           |                      | \$B\$4<br>Subject to                                 | the Constra                           | ints:      |  |                 | ess d      | Options                |  |  |  |  |
| 11<br>12<br>13<br>14<br>15 | 1         1           1         1           2         1           3         1           4         1           5         1 |                      |                                                      |                                       |            |  | <u>_</u> ha<br> | nge<br>ete | Reset All              |  |  |  |  |

The approach can be implemented to evaluate other values of W with a constant  $\sigma$  to yield the following results:

| W     | V        | D        |
|-------|----------|----------|
| 12000 | 441.5154 | 2339.231 |
| 13000 | 459.5438 | 2534.167 |
| 14000 | 476.8912 | 2729.102 |
| 15000 | 493.6293 | 2924.038 |
| 16000 | 509.8181 | 3118.974 |
| 17000 | 525.5085 | 3313.910 |
| 18000 | 540.7438 | 3508.846 |
| 19000 | 555.5614 | 3703.782 |
| 20000 | 569.9940 | 3898.718 |

The optimal velocity along with the minimal drag can be plotted versus weight. As shown below, the relationship is fairly linear for the specified range.



16.28 A tool such as the Excel Solver can be used to determine the solution as

|                            | B4           | <b>-</b> t                         | 🖌 =cons | st/SQRT(1+x <sup>/</sup>              | 2)-SQRT(1     | +x^2)*(1-co           | onst/(1+x^2)             | )+x                  |          |                        |
|----------------------------|--------------|------------------------------------|---------|---------------------------------------|---------------|-----------------------|--------------------------|----------------------|----------|------------------------|
| 1                          | A            | В                                  | С       | D                                     | E             | F                     | G                        | Н                    | L L      | J                      |
| 1                          | const        | 0.4                                |         | Solver Par                            | ameters       |                       |                          |                      |          | X                      |
| -<br>3<br>4<br>5<br>6<br>7 | x<br>1.05185 | f(x)<br>3 <mark>. 0.151724)</mark> |         | Set Target<br>Equal To:<br>By Changin | Cell:         | B\$4<br>O Mi <u>n</u> | )<br>O <u>V</u> alue of: |                      | 55       | <u>S</u> olve<br>Close |
| 8<br>9<br>10<br>11         |              |                                    |         | Subject to                            | the Constrain | its:                  | 2                        |                      | <u> </u> | Options                |
| 12<br>13<br>14             |              |                                    |         |                                       |               |                       | 8                        | <u>C</u> han<br>Dele | ge<br>te | Reset All              |

#### 16.29 An LP formulation for this problem can be set up as

| Minimize | C = 0.05X + 0.025Y + 0.15Z | {Minimize cost} |
|----------|----------------------------|-----------------|
|----------|----------------------------|-----------------|

subject to

| $X + Y + Z \ge 6$ | {Performance constraint}                       |
|-------------------|------------------------------------------------|
| X + Y < 2.5       | {Safety constraint}                            |
| $X - Y \ge 0$     | {X-Y Relationship constraint}                  |
| $Z - 0.5Y \ge 0$  | { <i>Y</i> - <i>Z</i> Relationship constraint} |

An Excel spreadsheet can be set up to solve the problem as

|   | A           | B    | C     | D    | E     | F  | G          |
|---|-------------|------|-------|------|-------|----|------------|
| 1 |             | X    | Y     | Z    | Total |    | Constraint |
| 2 | Amount      | 0    | 0     | 0    |       |    |            |
| 3 | Performance | 1    | 1     | 1    | 0     | >= | 6          |
| 4 | Safety      | 1    | 1     | 0    | 0     | <= | 2.5        |
| 5 | X-Y         | 1    | -1    | 0    | 0     | >= | 0          |
| 6 | Z-0.5*Y     | 0    | -0.5  | 1    | 0     | >= | 0          |
| 7 | Cost        | 0.05 | 0.025 | 0.15 | 0     |    |            |

The formulas are

|   | A           | B    | C     | D    | E                        | F  | G          |
|---|-------------|------|-------|------|--------------------------|----|------------|
| 1 |             | X    | Y     | Z    | Total                    |    | Constraint |
| 2 | Amount      | 0    | 0     | 0    |                          |    |            |
| 3 | Performance | 1    | 1     | 1    | =B3*B\$2+C3*C\$2+D3*D\$2 | >= | 6          |
| 4 | Safety      | 1    | 1     | 0    | =B4*B\$2+C4*C\$2+D4*D\$2 | <= | 2.5        |
| 5 | X-Y         | 1    | -1    | 0    | =B5*B\$2+C5*C\$2+D5*D\$2 | >= | 0          |
| 6 | Z-0.5*Y     | 0    | -0.5  | 1    | =B6*B\$2+C6*C\$2+D6*D\$2 | >= | 0          |
| 7 | Cost        | 0.05 | 0.025 | 0.15 | =B7*B\$2+C7*C\$2+D7*D\$2 |    |            |

The Solver can be called and set up as

| S <u>e</u> t Target Cell:                                                               | \$E\$7                     | <u>k.</u>   |             | Solve                |
|-----------------------------------------------------------------------------------------|----------------------------|-------------|-------------|----------------------|
| Equal To: O <u>M</u> ax<br>By Changing Cells:                                           | <mark>⊙</mark> Mi <u>n</u> | O ⊻alue of: | 0           | Close                |
| \$B\$2:\$D\$2                                                                           |                            |             | Guess       |                      |
|                                                                                         |                            |             |             |                      |
| S <u>u</u> bject to the Constra                                                         | ints:                      |             |             | Options              |
| Subject to the Constra<br>\$B\$2 >= 0                                                   | ints:                      | <u>^</u>    |             | Options              |
| Subject to the Constra<br>\$B\$2 >= 0<br>\$C\$2 >= 0<br>\$D\$2 >= 0                     | ints:                      | ^           |             |                      |
| Subject to the Constra<br>\$B\$2 >= 0<br>\$C\$2 >= 0<br>\$D\$2 >= 0<br>\$E\$3 >= \$G\$3 | ints:                      | <u> </u>    | <u>A</u> dd | Options<br>Reset All |

The resulting solution is

|   | A           | B    | C     | D    | E       | F  | G          |
|---|-------------|------|-------|------|---------|----|------------|
| 1 |             | X    | Y     | Z    | Total   |    | Constraint |
| 2 | Amount      | 1.25 | 1.25  | 3.5  |         |    |            |
| 3 | Performance | 1    | 1     | 1    | 6       | >= | 6          |
| 4 | Safety      | 1    | 1     | 0    | 2.5     | <= | 2.5        |
| 5 | X-Y         | 1    | -1    | 0    | 0       | >= | 0          |
| 6 | Z-0.5*Y     | 0    | -0.5  | 1    | 2.875   | >= | 0          |
| 7 | Cost        | 0.05 | 0.025 | 0.15 | 0.61875 |    |            |

16.30 An LP formulation for this problem can be set up as

Decision variables:  $x_i$  = quantity of part *i* 

Minimize  $P = 375x_A + 275x_B + 475x_C + 325x_D$ subject to  $2.5x_A + 1.5x_B + 2.75x_C + 2x_D \le 640$ 

 $3.5x_A + 3x_B + 3x_C + 2x_D \le 960$ 

A tool such as the Excel Solver can be used to determine the solution as

|    | A                                | В    | C       | D    | E   | F | G             | Н           | 1        | J            | K          | L   | M         |
|----|----------------------------------|------|---------|------|-----|---|---------------|-------------|----------|--------------|------------|-----|-----------|
| 1  |                                  | Part |         |      |     |   | Solver Dar    | motore      |          |              |            |     |           |
| 2  |                                  | A    | В       | С    | D   |   | Solver Pare   | ameters     |          | - 10         |            |     |           |
| 3  | Fabrication time (hr/100 units)  | 2.5  | 1.5     | 2.75 | 2   |   | Set Target C  | ell:        | \$C\$9 📑 | 1            |            |     | Solve     |
| 4  | Finishing time (hr/100 units)    | 3.5  | 3       | 3    | 2   |   | Equal To:     | @ May       | O Min    |              | 0          |     |           |
| 5  | Profit (\$/100 units)            | 375  | 275     | 475  | 325 |   | By Chapging   |             | O MIL    |              |            | _   | Close     |
| 6  | L.                               |      |         |      |     |   | by cridinging | ( COID)     |          | -            |            | ]   |           |
| 7  | Quantity                         | 0    | 192     | 128  | 0   |   | \$B\$7:\$E\$7 |             |          |              |            | 55  |           |
| 8  | Profit                           |      |         |      |     |   | Subject to t  | he Constrai | nts:     |              |            |     | Continue  |
| 9  | =B5*B7+C5*C7+D5*D7+E5*E7         | >    | 113600) |      |     |   |               |             | 0.80     | 2.42<br>1.50 | -          |     | Options   |
| 10 | Constraints:                     |      |         |      |     |   | \$B\$/ >= 0   | 45412       |          | 1            | <u>A</u> d | d   |           |
| 11 | Fabr Time                        |      |         |      |     |   | \$C\$14 <=    | \$E\$14     |          |              | Char       |     |           |
| 12 | =B3*B\$7+C3*C\$7+D3*D\$7+E3*E\$7 | >    | 640     | <=   | 640 |   | \$C\$7 >= 0   |             |          |              |            | ige | Reset All |
| 13 | Finish time                      |      |         |      |     |   | \$D\$7 >= 0   |             |          | 2            | Dele       | te  |           |
| 14 | =B4*B\$7+C4*C\$7+D4*D\$7+E4*E\$7 | >    | 960     | <=   | 960 |   | [p_p/ >= 0    |             |          |              |            |     | Help      |
| 15 |                                  |      |         |      |     |   | -             |             |          |              |            |     |           |

Thus, the results indicate that if we produce none of parts A and D and 192 and 128 of B and C, respectively, we will generate a maximum profit of \$113,600.