
 1

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual
may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the
publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their
individual course preparation. If you are a student using this Manual, you are using it without permission.

CHAPTER 2

2.1 Two possible versions can be developed:

IF x  10 THEN
 DO

 x = x – 5

 IF x < 50 EXIT

 END DO

ELSE

 IF x < 5 THEN

 x = 5

 ELSE

 x = 7.5

 END IF

ENDIF

IF x  10 THEN
 DO

 x = x – 5

 IF x < 50 EXIT

 END DO

ELSEIF x < 5

 x = 5

ELSE

 x = 7.5

ENDIF

2.2
DO

 i = i + 1

 IF z > 50 EXIT

 x = x + 5

 IF x > 5 THEN

 y = x

 ELSE

 y = 0

 ENDIF

 z = x + y

ENDDO

2.3 Note that this algorithm is made simpler by recognizing that concentration cannot by
definition be negative. Therefore, the maximum can be initialized as zero at the start of the

algorithm.

Step 1: Start

Step 2: Initialize sum, count and maximum to zero

Step 3: Examine top card.

Step 4: If it says “end of data” proceed to step 9; otherwise, proceed to next step.
Step 5: Add value from top card to sum.

Step 6: Increase count by 1.

Step 7: If value is greater than maximum, set maximum to value.
Step 7: Discard top card

Step 8: Return to Step 3.

Step 9: Is the count greater than zero?
 If yes, proceed to step 10.

 If no, proceed to step 11.

Step 10: Calculate average = sum/count

Step 11: End

2.4 Flowchart:

 2

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual
may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the
publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their
individual course preparation. If you are a student using this Manual, you are using it without permission.

startstart

sum = 0

count = 0

max = 0

input

value

input

value

value =

end of data

value =

end of data

value >

max

max = value

count >

0

endend

average = sum/count

sum = sum + value

count = count + 1

T

T

T

F

F

F

2.5 Students could implement the subprogram in any number of languages. The following Fortran
90 program is one example. It should be noted that the availability of complex variables in

Fortran 90 would allow this subroutine to be made even more concise. However, we did not

exploit this feature, in order to make the code more compatible with languages such as Visual
BASIC or C.

PROGRAM Rootfind

IMPLICIT NONE

INTEGER::ier

REAL::a, b, c, r1, i1, r2, i2

DATA a,b,c/1.,6.,2./

CALL Roots(a, b, c, ier, r1, i1, r2, i2)

IF (ier == 0) THEN

 PRINT *, r1,i1," i"

 PRINT *, r2,i2," i"

ELSE

 PRINT *, "No roots"

END IF

END

SUBROUTINE Roots(a, b, c, ier, r1, i1, r2, i2)

IMPLICIT NONE

INTEGER::ier

REAL::a, b, c, d, r1, i1, r2, i2

r1=0.

r2=0.

 3

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual
may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the
publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their
individual course preparation. If you are a student using this Manual, you are using it without permission.

i1=0.

i2=0.

IF (a == 0.) THEN

 IF (b /= 0) THEN

 r1 = -c/b

 ELSE

 ier = 1

 END IF

ELSE

 d = b**2 - 4.*a*c

 IF (d >= 0) THEN

 r1 = (-b + SQRT(d))/(2*a)

 r2 = (-b - SQRT(d))/(2*a)

 ELSE

 r1 = -b/(2*a)

 r2 = r1

 i1 = SQRT(ABS(d))/(2*a)

 i2 = -i1

 END IF

END IF

END

The answers for the 3 test cases are: (a) 0.3542, 5.646; (b) 0.4; (c) 0.4167 + 1.4696i;

0.4167  1.4696i.

Several features of this subroutine bear mention:

 The subroutine does not involve input or output. Rather, information is passed in and out

via the arguments. This is often the preferred style, because the I/O is left to the
discretion of the programmer within the calling program.

 Note that an error code is passed (IER = 1) for the case where no roots are possible.

2.6 The development of the algorithm hinges on recognizing that the series approximation of the

cosine can be represented concisely by the summation,










n

i

i
i

i

x

1

22
1

)!22(
)1(

where i = the order of the approximation. The following algorithm implements this

summation:

Step 1: Start

Step 2: Input value to be evaluated x and maximum order n
Step 3: Set order (i) equal to one

Step 4: Set accumulator for approximation (approx) to zero

Step 5: Set accumulator for factorial product (factor) equal to one
Step 6: Calculate true value of cos(x)

Step 7: If order is greater than n then proceed to step 13

 Otherwise, proceed to next step

Step 8: Calculate the approximation with the formula

 4

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual
may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the
publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their
individual course preparation. If you are a student using this Manual, you are using it without permission.

factor

x
1)(approxapprox

22i
1i




Step 9: Determine the error

100%
true

approxtrue
%error




Step 10: Increment the order by one

Step 11: Determine the factorial for the next iteration

2)i(23)i(2factorfactor 

Step 12: Return to step 7

Step 13: End

2.7 (a) Structured flowchart

startstart

i = 1

approx = 0

factor = 1

truth = cos(x)

input

x, n

input

x, n

i > n

sum = sum + value

count = count + 1

F

factor

x
1)(approxapprox

2i – 2
i – 1

+=
factor

x
1)(approxapprox

2i – 2
i – 1

+=

error
true approx

true
100


%error

true approx

true
100


%

i = i +1

factor = factor (2i – 3) (2i – 2)

endend

T

 5

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual
may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the
publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their
individual course preparation. If you are a student using this Manual, you are using it without permission.

(b) Pseudocode:

SUBROUTINE Coscomp(n,x)

i = 1

approx = 0

factor = 1

truth = cos(x)

DO

 IF i > n EXIT

 approx = approx + (-1)
i-1
•x

2i-2
 / factor

 error = (true - approx) / true) * 100

 DISPLAY i, true, approx, error

 i = i + 1

 factor = factor•(2•i-3)•(2•i-2)

END DO

END

2.8 Students could implement the subprogram in any number of languages. The following
MATLAB M-file is one example. It should be noted that MATLAB allows direct calculation

of the factorial through its intrinsic function factorial. However, we did not exploit this

feature, in order to make the code more compatible with languages such as Visual BASIC

and Fortran.

function coscomp(x,n)

i = 1;

tru = cos(x);

approx = 0;

f = 1;

fprintf('\n');

fprintf('order true value approximation error\n');

while (1)

 if i > n, break, end

 approx = approx + (-1)^(i - 1) * x^(2*i-2) / f;

 er = (tru - approx) / tru * 100;

 fprintf('%3d %14.10f %14.10f %12.8f\n',i,tru,approx,er);

 i = i + 1;

 f = f*(2*i-3)*(2*i-2);

end

Here is a run of the program showing the output that is generated:

>> coscomp(1.25,6)

order true value approximation error

 1 0.3153223624 1.0000000000 -217.13576938

 2 0.3153223624 0.2187500000 30.62655045

 3 0.3153223624 0.3204752604 -1.63416828

 4 0.3153223624 0.3151770698 0.04607749

 5 0.3153223624 0.3153248988 -0.00080437

 6 0.3153223624 0.3153223323 0.00000955

 6

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual
may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the
publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their
individual course preparation. If you are a student using this Manual, you are using it without permission.

2.9 (a) The following pseudocode provides an algorithm for this problem. Notice that the input of

the quizzes and homeworks is done with logical loops that terminate when the user enters a
negative grade:

INPUT WQ, WH, WF

nq = 0

sumq = 0

DO

 INPUT quiz (enter negative to signal end of quizzes)

 IF quiz < 0 EXIT

 nq = nq + 1

 sumq = sumq + quiz

END DO

AQ = sumq / nq

nh = 0

sumh = 0

DO

 INPUT homework (enter negative to signal end of homeworks)

 IF homework < 0 EXIT

 nh = nh + 1

 sumh = sumh + homework

END DO

AH = sumh / nh

DISPLAY "Is there a final grade (y or n)"

INPUT answer

IF answer = "y" THEN

 INPUT FE

 AG = (WQ * AQ + WH * AH + WF * FE) / (WQ + WH + WF)

ELSE

 AG = (WQ * AQ + WH * AH) / (WQ + WH)

END IF

DISPLAY AG

END

(b) Students could implement the program in any number of languages. The following VBA

code is one example.

Sub Grader()

Dim WQ As Double, WH As Double, WF As Double

Dim nq As Integer, sumq As Double, AQ As Double

Dim nh As Integer, sumh As Double, AH As Double

Dim answer As String, FE As Double

Dim AG As Double

'enter weights

WQ = InputBox("enter quiz weight")

WH = InputBox("enter homework weight")

WF = InputBox("enter final exam weight")

'enter quiz grades

nq = 0

sumq = 0

Do

 quiz = InputBox("enter negative to signal end of quizzes")

 If quiz < 0 Then Exit Do

 7

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual
may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the
publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their
individual course preparation. If you are a student using this Manual, you are using it without permission.

 nq = nq + 1

 sumq = sumq + quiz

Loop

AQ = sumq / nq

'enter homework grades

nh = 0

sumh = 0

Do

 homework = InputBox("enter negative to signal end of homeworks")

 If homework < 0 Then Exit Do

 nh = nh + 1

 sumh = sumh + homework

Loop

AH = sumh / nh

'determine and display the average grade

answer = InputBox("Is there a final grade (y or n)")

If answer = "y" Then

 FE = InputBox("final grade:")

 AG = (WQ * AQ + WH * AH + WF * FE) / (WQ + WH + WF)

Else

 AG = (WQ * AQ + WH * AH) / (WQ + WH)

End If

MsgBox "Average grade = " & AG

End Sub

The results should conform to:

AQ = 437/5 = 87.4

AH = 541/6 = 90.1667

without final

 677.88
30+35

)30(90.1667+35(87.4)
=AG 

with final

 84.89
3530+35

35(92))30(90.1667+35(87.4)
=AG 





2.10 (a) Pseudocode:

IF a > 0 THEN

 tol = 10–5

 x = a/2

 DO

 y = (x + a/x)/2

 e = (y – x)/y
 x = y

 IF e < tol EXIT

 END DO

 SquareRoot = x

ELSE

 SquareRoot = 0

END IF

 8

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual
may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the
publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their
individual course preparation. If you are a student using this Manual, you are using it without permission.

(b) Students could implement the function in any number of languages. The following VBA
and MATLAB codes are two possible options.

VBA Function Procedure MATLAB M-File
Option Explicit

Function SquareRoot(a)

Dim x As Double, y As Double

Dim e As Double, tol As Double

If a > 0 Then

 tol = 0.00001

 x = a / 2

 Do

 y = (x + a / x) / 2

 e = Abs((y - x) / y)

 x = y

 If e < tol Then Exit Do

 Loop

 SquareRoot = x

Else

 SquareRoot = 0

End If

End Function

function s = SquareRoot(a)

if a > 0

 tol = 0.00001;

 x = a / 2;

 while(1)

 y = (x + a / x) / 2;

 e = abs((y - x) / y);

 x = y;

 if e < tol, break, end

 end

 s = x;

else

 s = 0;

end

2.11 A MATLAB M-file can be written to solve this problem as

function futureworth(P, i, n)

nn = 0:n;

F = P*(1+i).^nn;

y = [nn;F];

fprintf('\n year future worth\n');

fprintf('%5d %14.2f\n',y);

This function can be used to evaluate the test case,

>> futureworth(100000,0.06,5)

 year future worth

 0 100000.00

 1 106000.00

 2 112360.00

 3 119101.60

 4 126247.70

 5 133822.56

2.12 A MATLAB M-file can be written to solve this problem as

function annualpayment(P, i, n)

nn = 1:n;

A = P*i*(1+i).^nn./((1+i).^nn-1);

y = [nn;A];

fprintf('\n year annual payment\n');

fprintf('%5d %14.2f\n',y);

 9

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual
may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the
publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their
individual course preparation. If you are a student using this Manual, you are using it without permission.

This function can be used to evaluate the test case,

>> annualpayment(55000,0.066,5)

 year annual payment

 1 58630.00

 2 30251.49

 3 20804.86

 4 16091.17

 5 13270.64

2.13 Students could implement the function in any number of languages. The following VBA and
MATLAB codes are two possible options.

VBA Function Procedure MATLAB M-File
Option Explicit

Function avgtemp(Tm, Tp, ts, te)

Dim pi As Double, w As Double

Dim Temp As Double, t As Double

Dim sum As Double, i As Integer

Dim n As Integer

pi = 4 * Atn(1)

w = 2 * pi / 365

sum = 0

n = 0

t = ts

For i = ts To te

 Temp = Tm+(Tp-Tm)*Cos(w*(t-205))

 sum = sum + Temp

 n = n + 1

 t = t + 1

Next i

avgtemp = sum / n

End Function

function Ta = avgtemp(Tm,Tp,ts,te)

w = 2*pi/365;

t = ts:te;

T = Tm + (Tp-Tm)*cos(w*(t-205));

Ta = mean(T);

The function can be used to evaluate the test cases. The following show the results for

MATLAB,

>> avgtemp(22.1,28.3,0,59)

ans =

 16.2148

>> avgtemp(10.7,22.9,180,242)

ans =

 22.2491

2.14 The programs are student specific and will be similar to the codes developed for VBA,

MATLAB and Fortran as outlined in sections 2.4, 2.5 and 2.6. The numerical results for the

different time steps are tabulated below along with an estimate of the absolute value of the
true relative error at t = 12 s:

 10

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual
may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the
publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their
individual course preparation. If you are a student using this Manual, you are using it without permission.

Step v(12) t (%)

2 49.96 5.2
1 48.70 2.6

0.5 48.09 1.3

The general conclusion is that the error is halved when the step size is halved.

2.15 Students could implement the subprogram in any number of languages. The following

Fortran 90 and VBA/Excel programs are two examples based on the algorithm outlined in

Fig. P2.15.

Fortran 90 VBA/Excel
Subroutine BubbleFor(n, b)

Implicit None

!sorts an array in ascending

!order using the bubble sort

Integer(4)::m, i, n

Logical::switch

Real::a(n),b(n),dum

m = n - 1

Do

 switch = .False.

 Do i = 1, m

 If (b(i) > b(i + 1)) Then

 dum = b(i)

 b(i) = b(i + 1)

 b(i + 1) = dum

 switch = .True.

 End If

 End Do

 If (switch == .False.) Exit

 m = m - 1

End Do

End

Option Explicit

Sub Bubble(n, b)

'sorts an array in ascending

'order using the bubble sort

Dim m As Integer

Dim i As Integer

Dim switch As Boolean

Dim dum As Double

m = n - 1

Do

 switch = False

 For i = 1 To m

 If b(i) > b(i + 1) Then

 dum = b(i)

 b(i) = b(i + 1)

 b(i + 1) = dum

 switch = True

 End If

 Next i

 If switch = False Then Exit Do

 m = m - 1

Loop

End Sub

For MATLAB, the following M-file implements the bubble sort following the algorithm

outlined in Fig. P2.15:

function y = Bubble(x)

n = length(x);

m = n - 1;

b = x;

while(1)

 s = 0;

 for i = 1:m

 if b(i) > b(i + 1)

 dum = b(i);

 11

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual
may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the
publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their
individual course preparation. If you are a student using this Manual, you are using it without permission.

 b(i) = b(i + 1);

 b(i + 1) = dum;

 s = 1;

 end

 end

 if s == 0, break, end

 m = m - 1;

end

y = b;

Notice how the length function allows us to omit the length of the vector in the function

argument. Here is an example MATLAB session that invokes the function to sort a vector:

>> a=[3 4 2 8 5 7];

>> Bubble(a)

ans =

 2 3 4 5 7 8

2.16 Here is a flowchart for the algorithm:

Function Vol(R, d)

pi = 3.141593

d < R

d < 3 * R

Vol =
“Overtop”

End Function

Vol = pi * d3 / 3

V1 = pi * R3 / 3

V2 = pi * R2 (d – R)

Vol = V1 + V2

T

T

F

F

Students could implement the function in any number of languages. The following VBA and

MATLAB codes are two possible options.

 12

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual
may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the
publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their
individual course preparation. If you are a student using this Manual, you are using it without permission.

VBA Function Procedure MATLAB M-File
Option Explicit

Function Vol(R, d)

Dim V1 As Double, V2 As Double

Dim pi As Double

pi = 4 * Atn(1)

If d < R Then

 Vol = pi * d ^ 3 / 3

ElseIf d <= 3 * R Then

 V1 = pi * R ^ 3 / 3

 V2 = pi * R ^ 2 * (d - R)

 Vol = V1 + V2

Else

 Vol = "overtop"

End If

End Function

function Vol = tankvolume(R, d)

if d < R

 Vol = pi * d ^ 3 / 3;

elseif d <= 3 * R

 V1 = pi * R ^ 3 / 3;

 V2 = pi * R ^ 2 * (d - R);

 Vol = V1 + V2;

else

 Vol = 'overtop';

end

The results are:

R d Volume

1 0.5 0.1309

1 1.2 1.675516

1 3 7.330383

1 3.1 overtop

2.17 Here is a flowchart for the algorithm:

Function Polar(x, y)

22
yxr  22
yxr 

x < 0

y > 0y > 0

 











x

y1
tan  












x

y1
tan

 











x

y1
tan  












x

y1
tan 

2


 

2


 

y < 0
2


 

2


 

 

y < 0


 180Polar


180Polar

End Polar

 = 3.141593

T

T

T

T

T

F

F

F

F

x < 0

 











x

y1
tan 












x

y1
tan

TF

F

 13

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual
may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the
publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their
individual course preparation. If you are a student using this Manual, you are using it without permission.

Students could implement the function in any number of languages. The following MATLAB
M-file is one option. Versions in other languages such as Fortran 90, Visual Basic, or C

would have a similar structure.

function polar(x, y)

r = sqrt(x .^ 2 + y .^ 2);

n = length(x);

for i = 1:n

 if x(i) > 0

 th(i) = atan(y(i) / x(i));

 elseif x(i) < 0

 if y(i) > 0

 th(i) = atan(y(i) / x(i)) + pi;

 elseif y(i) < 0

 th(i) = atan(y(i) / x(i)) - pi;

 else

 th(i) = pi;

 end

 else

 if y(i) > 0

 th(i) = pi / 2;

 elseif y(i) < 0

 th(i) = -pi / 2;

 else

 th(i) = 0;

 end

 end

 th(i) = th(i) * 180 / pi;

end

ou=[x;y;r;th];

fprintf('\n x y radius angle\n');

fprintf('%8.2f %8.2f %10.4f %10.4f\n',ou);

This function can be used to evaluate the test cases.

>> x=[1 1 1 -1 -1 -1 0 0 0];

>> y=[1 -1 0 1 -1 0 1 -1 0];

>> polar(x,y)

 x y radius angle

 1.00 1.00 1.4142 45.0000

 1.00 -1.00 1.4142 -45.0000

 1.00 0.00 1.0000 0.0000

 -1.00 1.00 1.4142 135.0000

 -1.00 -1.00 1.4142 -135.0000

 -1.00 0.00 1.0000 180.0000

 0.00 1.00 1.0000 90.0000

 0.00 -1.00 1.0000 -90.0000

 0.00 0.00 0.0000 0.0000

2.18 Students could implement the function in any number of languages. The following VBA and
MATLAB codes are two possible options.

 14

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual
may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the
publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their
individual course preparation. If you are a student using this Manual, you are using it without permission.

VBA Function Procedure MATLAB M-File
Function grade(s)

If s >= 90 Then

 grade = "A"

ElseIf s >= 80 Then

 grade = "B"

ElseIf s >= 70 Then

 grade = "C"

ElseIf s >= 60 Then

 grade = "D"

Else

 grade = "F"

End If

End Function

function grade = lettergrade(score)

if score >= 90

 grade = 'A';

elseif score >= 80

 grade = 'B';

elseif score >= 70

 grade = 'C';

elseif score >= 60

 grade = 'D';

else

 grade = 'F';

end

2.19 Students could implement the functions in any number of languages. The following VBA

and MATLAB codes are two possible options.

VBA Function Procedure MATLAB M-File

(a) Factorial
Function factor(n)

Dim x As Long, i As Integer

x = 1

For i = 1 To n

 x = x * i

Next i

factor = x

End Function

(b) Minimum

Function min(x, n)

Dim i As Integer

min = x(1)

For i = 2 To n

 If x(i) < min Then min = x(i)

Next i

End Function

(c) Average
Function mean(x, n)

Dim sum As Double

Dim i As Integer

sum = x(1)

For i = 2 To n

 sum = sum + x(i)

Next i

mean = sum / n

End Function

function fout = factor(n)

x = 1;

for i = 1:n

 x = x * i;

end

fout = x;

function xm = xmin(x)

n = length(x);

xm = x(1);

for i = 2:n

 if x(i) < xm, xm = x(i); end

end

function xm = xmean(x)

n = length(x);

s = x(1);

for i = 2:n

 s = s + x(i);

end

xm = s / n;

2.20 Students could implement the functions in any number of languages. The following VBA

and MATLAB codes are two possible options.

VBA Function Procedure MATLAB M-File

(a) Square root sum of squares

 15

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual
may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the
publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their
individual course preparation. If you are a student using this Manual, you are using it without permission.

Function SSS(x, n, m)

Dim i As Integer, j As Integer

SSS = 0

For i = 1 To n

 For j = 1 To m

 SSS = SSS + x(i, j) ^ 2

 Next j

Next i

SSS = Sqr(SSS)

End Function

(b) Normalization
Sub normal(x, n, m, y)

Dim i As Integer, j As Integer

Dim max As Double

For i = 1 To n

 max = Abs(x(i, 1))

 For j = 2 To m

 If Abs(x(i, j)) > max Then

 max = x(i, j)

 End If

 Next j

 For j = 1 To m

 y(i, j) = x(i, j) / max

 Next j

Next i

End Sub

function s = SSS(x)

[n,m] = size(x);

s = 0;

for i = 1:n

 for j = 1:m

 s = s + x(i, j) ^ 2;

 end

end

s = sqrt(s);

function y = normal(x)

[n,m] = size(x);

for i = 1:n

 mx = abs(x(i, 1));

 for j = 2:m

 if abs(x(i, j)) > mx

 mx = x(i, j);

 end

 end

 for j = 1:m

 y(i, j) = x(i, j) / mx;

 end

end

Alternate version:

function y = normal(x)

n = size(x);

for i = 1:n

 y(i,:) = x(i,:)/max(x(i,:));

end

