CHAPTER 4

4.1 (a) For this case $x_i = 0$ and h = x. Thus,

$$f(x) = f(0) + f'(0)x + f''(0)\frac{x^2}{2} + \cdots$$
$$f(0) = f'(0) = f''(0) = e^0 = 1$$
$$f(x) = 1 + x + \frac{x^2}{2} + \cdots$$
(b)

$$f(x_{i+1}) = e^{-x_i} - e^{-x_i}h + e^{-x_i}\frac{h^2}{2} - e^{-x_i}\frac{h^3}{6} + \cdots$$

for $x_i = 0.2$, $x_{i+1} = 1$ and h = 0.8. True value $= e^{-1} = 0.367879$.

zero order:

$$f(1) = e^{-0.2} = 0.818731$$

$$\varepsilon_t = \left| \frac{0.367879 - 0.818731}{0.367879} \right| \times 100\% = 122.55\%$$

first order:

$$f(1) = 0.818731 - 0.81873(0.8) = 0.163746$$
$$\varepsilon_t = \left| \frac{0.367879 - 0.163746}{0.367879} \right| \times 100\% = 55.49\%$$

second order:

$$f(1) = 0.818731 - 0.81873(0.8) + 0.818731\frac{0.8^2}{2} = 0.42574$$
$$\varepsilon_t = \left|\frac{0.367879 - 0.42574}{0.367879}\right| \times 100\% = 15.73\%$$

third order:

$$f(1) = 0.818731 - 0.81873(0.8) + 0.818731\frac{0.8^2}{2} - 0.818731\frac{0.8^3}{6} = 0.355875$$
$$\varepsilon_t = \left|\frac{0.367879 - 0.355875}{0.367879}\right| \times 100\% = 3.26\%$$

4.2 Use the stopping criterion

$$\varepsilon_s = 0.5 \times 10^{2-2} \% = 0.5\%$$

True value: $\cos(\pi/3) = 0.5$

zero order:

$$\cos\left(\frac{\pi}{3}\right) = 1$$
$$\varepsilon_t = \left|\frac{0.5 - 1}{0.5}\right| \times 100\% = 100\%$$

first order:

$$\cos\left(\frac{\pi}{3}\right) = 1 - \frac{(\pi/3)^2}{2} = 0.451689$$
$$\varepsilon_t = 9.66\% \qquad \varepsilon_a = \left|\frac{0.451689 - 1}{0.451689}\right| \times 100\% = 121.4\%$$

second order:

$$\cos\left(\frac{\pi}{3}\right) = 0.451689 + \frac{(\pi/3)^4}{24} = 0.501796$$
$$\varepsilon_t = 0.359\% \qquad \varepsilon_a = \left|\frac{0.501796 - 0.451689}{0.501796}\right| \times 100\% = 9.986\%$$

third order:

$$\cos\left(\frac{\pi}{3}\right) = 0.501796 - \frac{(\pi/3)^6}{720} = 0.499965$$

$$\varepsilon_t = 0.00709\%$$
 $\varepsilon_a = \left| \frac{0.499965 - 0.501796}{0.499965} \right| \times 100\% = 0.366\%$

Since the approximate error is below 0.5%, the computation can be terminated.

4.3 Use the stopping criterion: $\varepsilon_s = 0.5 \times 10^{2-2}\% = 0.5\%$

True value: $sin(\pi/3) = 0.866025...$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. <u>No part of this Manual</u> may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

zero order:

$$\sin\left(\frac{\pi}{3}\right) = \frac{\pi}{3} = 1.047198$$
$$\varepsilon_t = \left|\frac{0.866025 - 1.047198}{0.866025}\right| \times 100\% = 20.92\%$$

first order:

$$\sin\left(\frac{\pi}{3}\right) = 1.047198 - \frac{(\pi/3)^3}{6} = 0.855801$$
$$\varepsilon_t = 1.18\% \qquad \varepsilon_a = \left|\frac{0.855801 - 1.047198}{0.855801} \times 100\% = 22.36\%\right|$$

second order:

$$\sin\left(\frac{\pi}{3}\right) = 0.855801 + \frac{(\pi/3)^5}{120} = 0.866295$$
$$\varepsilon_t = 0.031\% \qquad \varepsilon_a = \left|\frac{0.866295 - 0.855801}{0.866295}\right| \times 100\% = 1.211\%$$

third order:

$$\sin\left(\frac{\pi}{3}\right) = 0.866295 - \frac{(\pi/3)^7}{5040} = 0.866021$$
$$\varepsilon_t = 0.000477\% \qquad \varepsilon_a = \left|\frac{0.866021 - 0.866295}{0.866021}\right| \times 100\% = 0.0316\%$$

Since the approximate error is below 0.5%, the computation can be terminated.

4.4 True value: f(3) = 554.

zero order:

$$f(3) = f(1) = -62$$
$$\varepsilon_t = \left| \frac{554 - (-62)}{554} \right| \times 100\% = 111.191\%$$

first order:

$$f(3) = -62 + f'(1)(3 - 1) = -62 + 70(2) = 78$$
 $\mathcal{E}_t = 85.921\%$

second order:

$$f(3) = 78 + \frac{f''(1)}{2}(3-1)^2 = 78 + \frac{138}{2}4 = 354$$
 $\varepsilon_t = 36.101\%$

third order:

$$f(3) = 354 + \frac{f^{(3)}(1)}{6}(3-1)^3 = 354 + \frac{150}{6}8 = 554 \qquad \varepsilon_t = 0\%$$

Thus, the third-order result is perfect because the original function is a third-order polynomial.

4.5 True value: $f(2.5) = \ln(2.5) = 0.916291...$

zero order:

$$f(2.5) = f(1) = 0$$

$$\varepsilon_t = \left| \frac{0.916291 - 0}{0.916291} \right| \times 100\% = 100\%$$

first order:

$$f(2.5) = f(1) + f'(1)(2.5 - 1) = 0 + 1(1.5) = 1.5$$

$$\varepsilon_t = \left| \frac{0.916291 - 1.5}{0.916291} \right| \times 100\% = 63.704\%$$

second order:

$$f(2.5) = 1.5 + \frac{f''(1)}{2}(2.5 - 1)^2 = 1.5 + \frac{-1}{2}1.5^2 = 0.375$$

$$\varepsilon_t = \left| \frac{0.916291 - 0.375}{0.916291} \right| \times 100\% = 59.074\%$$

third order:

$$f(2.5) = 0.375 + \frac{f^{(3)}(1)}{6}(2.5 - 1)^3 = 0.375 + \frac{2}{6}1.5^3 = 1.5$$

$$\varepsilon_t = \left| \frac{0.916291 - 1.5}{0.916291} \right| \times 100\% = 63.704\%$$

fourth order:

$$f(2.5) = 1.5 + \frac{f^{(4)}(1)}{24}(2.5 - 1)^4 = 1.5 + \frac{-6}{24}1.5^4 = 0.234375$$
$$\varepsilon_t = \left|\frac{0.916291 - 0.234375}{0.916291}\right| \times 100\% = 74.421\%$$

Thus, the process seems to be diverging suggesting that a smaller step would be required for convergence.

4.6 True value:

$$f'(x) = 75x^{2} - 12x + 7$$
$$f'(2) = 75(2)^{2} - 12(2) + 7 = 283$$

function values:

$x_{i-1} = 1.8$	$f(x_{i-1}) = 50.96$
$x_i = 2$	$f(x_i) = 102$
$x_{i+1} = 2.2$	$f(x_{i+1}) = 164.56$

forward:

$$f'(2) = \frac{164.56 - 102}{0.2} = 312.8$$

$$\varepsilon_t = \left| \frac{283 - 312.8}{283} \right| \times 100\% = 10.53\%$$

backward:

$$f'(2) = \frac{102 - 50.96}{0.2} = 255.2$$

$$\varepsilon_t = \left| \frac{283 - 255.2}{283} \right| \times 100\% = 9.823\%$$

centered:

$$f'(2) = \frac{164.56 - 50.96}{2(0.2)} = 284$$

$$\varepsilon_t = \left| \frac{283 - 284}{283} \right| \times 100\% = 0.353\%$$

Both the forward and backward have errors that can be approximated by (recall Eq. 4.15),

$$|E_t| \approx \frac{f''(x_i)}{2}h$$

f''(2) = 150x - 12 = 150(2) - 12 = 288
$$|E_t| \approx \frac{288}{2}0.2 = 28.8$$

This is very close to the actual error that occurred in the approximations

forward: $|E_t| \approx |283 - 312.8| = 29.8$ backward: $|E_t| \approx |283 - 255.2| = 27.8$

The centered approximation has an error that can be approximated by,

$$E_t \approx -\frac{f^{(3)}(x_i)}{6}h^2 = -\frac{150}{6}0.2^2 = -1$$

which is exact: $E_t = 283 - 284 = -1$. This result occurs because the original function is a cubic equation which has zero fourth and higher derivatives.

4.7 True value:

$$f''(x) = 150x - 12$$
$$f''(2) = 150(2) - 12 = 288$$

h = 0.25:

$$f''(2) = \frac{f(2.25) - 2f(2) + f(1.75)}{0.25^2} = \frac{182.1406 - 2(102) + 39.85938}{0.25^2} = 288$$

h = 0.125:

$$f''(2) = \frac{f(2.125) - 2f(2) + f(1.875)}{0.125^2} = \frac{139.6738 - 2(102) + 68.82617}{0.125^2} = 288$$

Both results are exact because the errors are a function of 4^{th} and higher derivatives which are zero for a 3^{rd} -order polynomial.

4.8

$$\frac{\partial v}{\partial c} = \frac{cgte^{-(c/m)t} - gm(1 - e^{-(c/m)t})}{c^2} = -1.38666$$
$$\Delta v(\tilde{c}) = \left| \frac{\partial v}{\partial c} \right| \Delta \tilde{c} = 1.38666(1.5) = 2.079989$$
$$v(12.5) = \frac{9.8(50)}{12.5} \left(1 - e^{-12.5(6)/50} \right) = 30.4533$$
$$v = 30.4533 \pm 2.079989$$

Thus, the bounds computed with the first-order analysis range from 28.3733 to 32.5333. This result can be verified by computing the exact values as

$$v(c - \Delta c) = \frac{9.8(50)}{11} \left(1 - e^{-(11/50)6} \right) = 32.6458$$
$$v(c + \Delta c) = \frac{9.8(50)}{14} \left(1 - e^{-(14/50)6} \right) = 28.4769$$

Thus, the range of ± 2.0844 is close to the first-order estimate.

4.9

$$v(12.5) = \frac{9.8(50)}{12.5} \left(1 - e^{-12.5(6)/50}\right) = 30.4533$$

$$\Delta v(\tilde{c}, \tilde{m}) = \left|\frac{\partial v}{\partial c}\right| \Delta \tilde{c} + \left|\frac{\partial v}{\partial m}\right| \Delta \tilde{m}$$

$$\frac{\partial v}{\partial c} = \frac{cgte^{-(c/m)t} - gm(1 - e^{-(c/m)t})}{c^2} = -1.38666$$

$$\frac{\partial v}{\partial m} = \frac{gt}{m} e^{-(c/m)t} + \frac{g}{c} \left(1 - e^{-(c/m)t}\right) = 0.871467$$

$$\Delta v(\tilde{c}, \tilde{m}) = \left|-1.38666(1.5) + \left|0.871467(2)\right| = 2.079989 + 1.742934 = 3.822923$$

$$v = 30.4533 \pm 3.822923$$

$$\Delta H(\tilde{T}) = \left| \frac{\partial H}{\partial T} \right| \Delta \tilde{T}$$
$$\frac{\partial H}{\partial T} = 4Ae\sigma T^3 = 4(0.15)0.9(5.67 \times 10^{-8})650^3 = 8.408$$
$$\Delta H(\tilde{T}) = 8.408(20) = 168.169$$

Exact error:

$$\Delta H_{\text{true}} = \frac{H(670) - H(630)}{2} = \frac{1542468 - 1205.81}{2} = 168.3286$$

Thus, the first-order approximation is close to the exact result.

For $\Delta \tilde{T} = 40$,

-

$$\Delta H(T) = 8.408(40) = 336.3387$$

Exact error:

$$\Delta H_{\text{true}} = \frac{H(690) - H(610)}{2} = \frac{1735.055 - 1059.83}{2} = 337.6124$$

Again, the first-order approximation is close to the exact result. The results are good because H(T) is nearly linear over the ranges we are examining. This is illustrated by the following plot.

4.11 For a sphere, $A = 4\pi r^2$. Therefore,

$$H = 4\pi r^2 e \sigma T^4$$

At the mean values of the parameters,

$$\Delta H = \left| \frac{\partial H}{\partial r} \right| \Delta \tilde{r} + \left| \frac{\partial H}{\partial e} \right| \Delta \tilde{e} + \left| \frac{\partial H}{\partial T} \right| \Delta \tilde{T}$$

$$\frac{\partial H}{\partial r} = 8\pi r e \, \sigma T^4 = 17,603.84$$

$$\frac{\partial H}{\partial e} = 4\pi r^2 \sigma T^4 = 1466987$$

$$\frac{\partial H}{\partial T} = 16\pi r^2 e \, \sigma T^3 = 9.6021$$

$$\Delta H = 1760384(0.01) + 1466987(0.05) + 9.6024(20) = 441.4297$$
To check this result, we can compute

 $H(0.15, 0.9, 550) = 4\pi (0.15)^2 0.90(5.67 \times 10^{-8})(550)^4 = 1320288$

$$H(0.14,0.85,530) = 4\pi (0.14)^2 0.85(5.67 \times 10^{-8})(530)^4 = 936.6372$$
$$H(0.16,0.95,570) = 4\pi (0.16)^2 0.95(5.67 \times 10^{-8})(570)^4 = 1829.178$$
$$\Delta H_{\text{true}} = \frac{1829.178 - 936.6372}{2} = 446.2703$$

4.12 The condition number is computed as

$$CN = \frac{\widetilde{x}f'(\widetilde{x})}{f(\widetilde{x})}$$

(a)
$$CN = \frac{1.0000 \left[\frac{1}{2\sqrt{1.00001 - 1}} \right]}{\sqrt{1.00001 - 1} + 1} = \frac{1.0000 (158.1139)}{1.003162} = 157.617$$

The result is ill-conditioned because the derivative is large near x = 1.

(b)
$$CN = \frac{10(-e^{-10})}{e^{-10}} = \frac{10(-4.54 \times 10^{-5})}{4.54 \times 10^{-5}} = -10$$

The result is ill-conditioned because *x* is large.

(c)
$$CN = \frac{300 \left[\frac{300}{\sqrt{300^2 + 1}} - 1 \right]}{\sqrt{300^2 + 1} - 300} = \frac{300(-5.55556 \times 10^{-6})}{0.0016667} = -0.99999444$$

The result is well-conditioned.

(d)
$$CN = \frac{x \frac{-xe^{-x} - e^{-x} + 1}{x^2}}{\left(\frac{e^{-x} - 1}{x}\right)} = \frac{0.001(0.499667)}{-0.9995} = -0.0005$$

The result is well-conditioned.

(e)
$$CN = \frac{x \frac{(1+\cos x)\cos x + \sin x(\sin x)}{(1+\cos x)^2}}{\frac{\sin x}{1+\cos x}} = \frac{3.141907(20,264,237)}{-63662} = -10,001$$

The result is ill-conditioned because, as in the following plot, the function has a singularity at $x = \pi$.

4.13 Addition and subtraction:

$$f(u,v) = u + v$$
$$\Delta f = \left| \frac{\partial f}{\partial u} \right| \Delta \tilde{u} + \left| \frac{\partial f}{\partial v} \right| \Delta \tilde{v}$$
$$\left| \frac{\partial f}{\partial u} \right| = 1 \qquad \left| \frac{\partial f}{\partial v} \right| = 1$$
$$f(\tilde{u}, \tilde{v}) = \Delta \tilde{u} + \Delta \tilde{v}$$

Multiplication:

$$f(u,v) = u \cdot v$$

$$\left|\frac{\partial f}{\partial u}\right| = v \qquad \left|\frac{\partial f}{\partial v}\right| = u$$

$$f(\tilde{u},\tilde{v}) = |\tilde{v}|\Delta \tilde{u} + |\tilde{u}|\Delta \tilde{v}$$

$$\frac{\text{Division:}}{f(u,v) = u/v}$$

$$\left|\frac{\partial f}{\partial u}\right| = \frac{1}{v} \qquad \left|\frac{\partial f}{\partial v}\right| = \frac{u}{v^2}$$

$$f(\tilde{u},\tilde{v}) = \left|\frac{1}{v}|\Delta \tilde{u} + \left|\frac{u}{v^2}\right|\Delta \tilde{v}$$

$$f(\tilde{u},\tilde{v}) = \frac{|v|\Delta \tilde{u} + |u|\Delta \tilde{v}}{|v^2|}$$

4.14

$$f(x) = ax^{2} + bx + c$$
$$f'(x) = 2ax + b$$
$$f''(x) = 2a$$

Substitute these relationships into Eq. (4.4),

$$ax_{i+1}^{2} + bx_{i+1} + c = ax_{i}^{2} + bx_{i} + c + (2ax_{i} + b)(x_{i+1} - x_{i}) + \frac{2a}{2!}(x_{i+1}^{2} - 2x_{i+1}x_{i} + x_{i}^{2})$$

Collect terms

$$ax_{i+1}^{2} + bx_{i+1} + c = ax_{i}^{2} + 2ax_{i}(x_{i+1} - x_{i}) + a(x_{i+1}^{2} - 2x_{i+1}x_{i} + x_{i}^{2}) + bx_{i} + b(x_{i+1} - x_{i}) + c$$

$$ax_{i+1}^{2} + bx_{i+1} + c = ax_{i}^{2} + 2ax_{i}x_{i+1} - 2ax_{i}^{2} + ax_{i+1}^{2} - 2ax_{i+1}x_{i} + ax_{i}^{2} + bx_{i} + bx_{i+1} - bx_{i} + c$$

$$ax_{i+1}^{2} + bx_{i+1} + c = (ax_{i}^{2} - 2ax_{i}^{2} + ax_{i}^{2}) + ax_{i+1}^{2} + (2ax_{i}x_{i+1} - 2ax_{i+1}x_{i}) + (bx_{i} - bx_{i}) + bx_{i+1} + c$$

$$ax_{i+1}^{2} + bx_{i+1} + c = ax_{i+1}^{2} + bx_{i+1} + c$$

4.15 The first-order error analysis can be written as

$$\Delta Q = \left| \frac{\partial Q}{\partial n} \right| \Delta n + \left| \frac{\partial Q}{\partial S} \right| \Delta S$$

$$\frac{\partial Q}{\partial n} = -\frac{1}{n^2} \frac{(BH)^{5/3}}{(B+2H)^{2/3}} S^{0.5} = -50.74 \qquad \qquad \frac{\partial Q}{\partial S} = \frac{1}{n} \frac{(BH)^{5/3}}{(B+2H)^{2/3}} \frac{1}{2S^{0.5}} = 2536.9$$

$$\Delta Q = \left| -50.74 \right| 0.003 + \left| 2536.9 \right| 0.00003 = 0.152 + 0.076 = 0.228$$

The error from the roughness is about 2 times the error caused by the uncertainty in the slope. Thus, improving the precision of the roughness measurement would be the best strategy.

4.16 Use the stopping criterion

$$\varepsilon_s = 0.5 \times 10^{2-2} \% = 0.5\%$$

True value: 1/(1 - 0.1) = 1.111111...

zero order:

$$\frac{1}{1-x} = 1$$

$$\varepsilon_t = \left| \frac{1.11111-1}{1.11111} \right| \times 100\% = 10\%$$

first order:

$$\frac{1}{1-x} = 1 + 0.1 = 1.1$$

$$\varepsilon_t = 1\% \qquad \varepsilon_a = \left|\frac{1.1-1}{1.1}\right| \times 100\% = 9.0909\%$$

second order:

$$\frac{1}{1-x} = 1 + 0.1 + 0.01 = 1.11$$

$$\varepsilon_t = 0.1\%$$
 $\varepsilon_a = \left|\frac{1.11 - 1.1}{1.11}\right| \times 100\% = 0.900900\%$

third order:

$$\begin{aligned} \frac{1}{1-x} &= 1 + 0.1 + 0.01 + 0.001 = 1.111\\ \varepsilon_t &= 0.01\% \end{aligned} \qquad \varepsilon_a = \left| \frac{1.111 - 1.11}{1.111} \right| \times 100\% = 0.090009\% \end{aligned}$$

Since the approximate error is below 0.5%, the computation can be terminated.

4.17

$$\Delta(\sin\phi_0) = \left|\frac{d\sin\phi_0}{d\alpha}\right| \Delta\alpha$$
$$\frac{d\sin\phi_0}{d\alpha} = \frac{-\beta}{2\sqrt{(1+\alpha)(1+\alpha-\alpha\beta)}} + \sqrt{1-\frac{\alpha\beta}{1+\alpha}}$$

where $\beta = (v_e/v_0)^2 = 4$ and $\alpha = 0.25$ to give,

$$\frac{d\sin\phi_0}{d\alpha} = \frac{-4}{2\sqrt{(1+0.25)(1+0.25-0.25(4))}} + \sqrt{1-\frac{0.25(4)}{1+0.25}} = -3.1305$$

$$\Delta(\sin\phi_0) = 3.1305\Delta\alpha$$

For $\Delta \alpha = 0.25(0.02) = 0.005$,

$$\Delta(\sin\phi_0) = 3.1305(0.005) = 0.015652$$

$$\sin\phi_0 = (1+0.25)\sqrt{1-\frac{0.25}{1+0.25}4} = 0.559017$$

Therefore,

 $\max \sin \phi_0 = 0.559017 + 0.015652 = 0.574669$

 $\min \sin \phi_0 = 0.559017 - 0.015652 = 0.543365$

$$\max \phi_0 = \arcsin(0.574669) \times \frac{180}{\pi} = 35.076^{\circ}$$

$$\min \phi_0 = \arcsin(0.543365) \times \frac{180}{\pi} = 32.913^{\circ}$$

4.18 The derivatives can be computed as

$$f(x) = x - 1 - 0.5 \sin x$$

$$f'(x) = 1 - 0.5 \cos x$$

$$f''(x) = 0.5 \sin x$$

$$f^{(3)}(x) = 0.5 \cos x$$

$$f^{(4)}(x) = -0.5 \sin x$$

The first through fourth-order Taylor series expansions can be computed based on Eq. 4.5 as

First-order:

$$f_1(x) = f(a) + f'(a)(x-a)$$

$$f_1(x) = \frac{\pi}{2} - 1 - 0.5\sin\frac{\pi}{2} + \left[1 - 0.5\cos\frac{\pi}{2}\right]\left(x - \frac{\pi}{2}\right) = x - 1.5$$

Second-order:

$$f_2(x) = f_1(x) + \frac{f''(a)}{2}(x-a)^2$$
$$f_2(x) = x - 1.5 + 0.25\sin(\pi/2)(x - \pi/2)^2$$

Third-order:

$$f_3(x) = f_2(x) + \frac{f^{(3)}(a)}{6}(x-a)^3$$

$$f_3(x) = x - 1.5 + 0.25\sin(\pi/2)(x - \pi/2)^2 + \frac{0.5\cos(\pi/2)}{6}(x - a)^3$$

$$f_3(x) = x - 1.5 + 0.25 \sin(\pi/2)(x - \pi/2)^2$$

Fourth-order:

$$f_4(x) = f_3(x) + \frac{f^{(4)}(a)}{24}(x-a)^4$$
$$f_4(x) = x - 1.5 + 0.25\sin(\pi/2)(x-\pi/2)^2 - \frac{0.5\sin(\pi/2)}{24}(x-\pi/2)^4$$

$$f_4(x) = x - 1.5 + 0.25\sin(\pi/2)(x - \pi/2)^2 - \frac{1}{48}(x - \pi/2)^4$$

Note the 2nd and 3rd Order Taylor Series functions are the same. The following MATLAB script file which implements and plots each of the functions indicates that the 4th-order expansion satisfies the problem requirements.

```
x=0:0.001:3.2;
f=x-1-0.5*sin(x);
subplot(2, 2, 1);
plot(x, f); grid; title('f(x)=x-1-0.5*sin(x)'); hold on
f1=x-1.5;
e1=abs(f-f1);
                      %Calculates the absolute value of the
difference/error
subplot(2,2,2);
plot(x,e1);grid;title('1st Order Taylor Series Error');
f2=x-1.5+0.25.*((x-0.5*pi).^2);
e2=abs(f-f2);
subplot(2, 2, 3);
plot(x,e2);grid;title('2nd/3rd Order Taylor Series Error');
f4=x-1.5+0.25.*((x-0.5*pi).^2)-(1/48)*((x-0.5*pi).^4);
e4=abs(f4-f);
subplot(2,2,4);
```

plot(x,e4);grid;title('4th Order Taylor Series Error');hold off

4.19 Here are Excel worksheets and charts that have been set up to solve this problem:

	A	B	C	DE		F	G	Н
1	dx	0.25						
2								
3	First	f(x)	f(x-dx)	f(x+dx)	f(x)-exact	f(x)-back	f(x)-cent	f(x)-forw
4	-2	0	-2.89063	2.140625	10	11.5625	10.0625	8.5625
5	-1.75	2.140625	0	3.625	7.1875	8.5625	7.25	5.9375
6	-1.5	3.625	2.140625	4.546875	4.75	5.9375	4.8125	3.6875
7	-1.25	4.546875	3.625	5	2.6875	3.6875	2.75	1.8125
8	-1	5	4.546875	5.078125	1	1.8125	1.0625	0.3125
9	-0.75	5.078125	5	4.875	-0.3125	0.3125	-0.25	-0.8125
10	-0.5	4.875	5.078125	4.484375	-1.25	-0.8125	-1.1875	-1.5625
11	-0.25	4.484375	4.875	4	-1.8125	-1.5625	-1.75	-1.9375
12	0	4	4.484375	3.515625	-2	-1.9375	-1.9375	-1.9375
13	0.25	3.515625	4	3.125	-1.8125	-1.9375	-1.75	-1.5625
14	0.5	3.125	3.515625	2.921875	-1.25	-1.5625	-1.1875	-0.8125
15	0.75	2.921875	3.125	3	-0.3125	-0.8125	-0.25	0.3125
16	1	3	2.921875	3.453125	1	0.3125	1.0625	1.8125
17	1.25	3.453125	3	4.375	2.6875	1.8125	2.75	3.6875
18	1.5	4.375	3.453125	5.859375	4.75	3.6875	4.8125	5.9375
19	1.75	5.859375	4.375	8	7.1875	5.9375	7.25	8.5625
20	2	8	5.859375	10.89063	10	8.5625	10.0625	11.5625

	A	В	C	D	E	F	G	н	1	J
1	dx	0.25								
2		-	-							
3	x	f(x)	f(x-dx)	f(x+dx)	f(x-2dx)	f(x+2dx)	f"(x)-exact	f"(x)-back	f"(x)-cent	f"(x)-forw
4	-2	0	-2.89063	2.140625	-6.625	3.625	-12	-13.5	-12	-10.5
5	-1.75	2.140625	0	3.625	-2.89063	4.546875	-10.5	-12	-10.5	-9
6	-1.5	3.625	2.140625	4.546875	0	5	-9	-10.5	-9	-7.5
7	-1.25	4.546875	3.625	5	2.140625	5.078125	-7.5	-9	-7.5	-6
8	-1	5	4.546875	5.078125	3.625	4.875	-6	-7.5	-6	-4.5
9	-0.75	5.078125	5	4.875	4.546875	4.484375	-4.5	-6	-4.5	-3
10	-0.5	4.875	5.078125	4.484375	5	4	-3	-4.5	-3	-1.5
11	-0.25	4.484375	4.875	4	5.078125	3.515625	-1.5	-3	-1.5	0
12	0	4	4.484375	3.515625	4.875	3.125	0	-1.5	0	1.5
13	0.25	3.515625	4	3.125	4.484375	2.921875	1.5	0	1.5	3
14	0.5	3.125	3.515625	2.921875	4	3	3	1.5	3	4.5
15	0.75	2.921875	3.125	3	3.515625	3.453125	4.5	3	4.5	6
16	1	3	2.921875	3.453125	3.125	4.375	6	4.5	6	7.5
17	1.25	3.453125	3	4.375	2.921875	5.859375	7.5	6	7.5	9
18	1.5	4.375	3.453125	5.859375	3	8	9	7.5	9	10.5
19	1.75	5.859375	4.375	8	3.453125	10.89063	10.5	9	10.5	12
20	2	8	5.859375	10.89063	4.375	14.625	12	10.5	12	13.5

