CHAPTER 7

7.1 In a fashion similar to Example 7.1, $n=4, a_{0}=-20, a_{1}=3, a_{2}=14.5, a_{3}=-7.5, a_{4}=1$ and $t=$ 2. These can be used to compute

$$
\begin{aligned}
& r=a_{4}=1 \\
& a_{4}=0
\end{aligned}
$$

For $i=3$,
$s=a_{3}=-7.5$
$a_{3}=r=1$
$r=s+r t=-7.5+1(2)=-5.5$
For $i=2$,
$s=a_{2}=14.5$
$a_{2}=r=-5.5$
$r=s+r t=14.5-5.5(2)=3.5$
For $i=1$,
$s=a_{1}=3$
$a_{1}=r=3.5$
$r=s+r t=3+3.5(2)=10$
For $i=0$,
$s=a_{0}=-20$
$a_{0}=r=10$
$r=s+r t=-20+10(2)=0$
Therefore, the quotient is $x^{3}-5.5 x^{2}+3.5 x+10$ with a remainder of zero. Thus, 2 is a root. This result can be easily verified with MATLAB,

```
>> a = [lllll.5 14.5 3 -20];
>> b = [1 -2];
>> [d,e] = deconv(a,b)
d =
    1.0000 -5.5000 3.5000 10.0000
e =
    0}00000
```

7.2 In a fashion similar to Example 7.1, $n=5, a_{0}=10, a_{1}=-7, a_{2}=-6, a_{3}=1, a_{4}=-5, a_{5}=1$, and $t=2$. These can be used to compute

$$
\begin{aligned}
& r=a_{4}=1 \\
& a_{4}=0
\end{aligned}
$$

For $i=4$,

$$
s=a_{4}=-5
$$

$$
a_{3}=r=1
$$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
$r=s+r t=-5+1(2)=-3$

For $i=3$,
$s=a_{3}=1$
$a_{3}=r=-3$
$r=s+r t=1-3(2)=-5$
For $i=2$,
$s=a_{2}=-6$
$a_{2}=r=-5$
$r=s+r t=-6-5(2)=-16$

For $i=1$,
$s=a_{1}=-7$
$a_{1}=r=-16$
$r=s+r t=-7-16(2)=-39$

For $i=0$,
$s=a_{0}=10$
$a_{0}=r=-39$
$r=s+r t=10-39(2)=-68$
Therefore, the quotient is $x^{4}-3 x^{3}-5 x^{2}-16 x-39$ with a remainder of -68 . Thus, 2 is not a root. This result can be easily verified with MATLAB,

```
>> a=[[1 -5 1 -6 -7 10}]
>> b = [1 -2];
>> [d,e] = deconv (a,b)
d =
    \begin{array} { l l l l l } { 1 } & { - 3 } & { - 5 } & { - 1 6 } & { - 3 9 } \end{array}
e =
    0}00\mp@code{0
```

7.3 (a) A plot indicates a root at about $x=2$.

Try initial guesses of $x_{0}=1, x_{1}=1.5$, and $x_{2}=2.5$. Using the same approach as in Example 7.2,

First iteration:
$f(1)=-6$
$f(1.5)=-3.875$
$f(2.5)=9.375$
$h_{0}=0.5$
$h_{1}=1$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$$
\begin{aligned}
& \delta_{0}=4.25 \\
& a=\frac{13.25-4.25}{1+0.5}=6 \quad \delta_{1}=13.25 \\
& x_{3}=2.5+\frac{b=6(1)+13.25=19.25}{19.25+\sqrt{19.25^{2}-4(6)(9.375)}}=1.901244 \\
& \varepsilon_{a}=\left|\frac{1.901244-2.5}{1.901244}\right| \times 100 \%=31.49 \%
\end{aligned}
$$

The iterations can be continued as tabulated below:

\boldsymbol{i}	\boldsymbol{x}_{3}	$\boldsymbol{\varepsilon}_{\boldsymbol{a}}$
0	1.901244	31.4929%
1	1.919270	0.9392%
2	1.919639	0.0192%
3	1.919640	0.0000%

(b) A plot indicates a root at about $x=0.7$.

Try initial guesses of $x_{0}=0.5, x_{1}=1$, and $x_{2}=1.5$. Using the same approach as in Example 7.2,

First iteration:

$$
\begin{array}{lll}
\hline f(0.5)=-1 & f(1)=1.5 & f(1.5)=5.25 \\
h_{0}=0.5 & h_{1}=0.5 \\
\delta_{0}=5 & \delta_{1}=7.5 & \\
a=\frac{7.5-5}{0.5+0.5}=2.5 & b=2.5(0.5)+7.5=8.75 & c=5.25 \\
x_{3}=1.5+\frac{-2(5.25)}{8.75+\sqrt{8.75^{2}-4(2.5)(5.25)}}=0.731071 & \\
\varepsilon_{a}=\left|\frac{0.731071-1.5}{0.731071}\right| \times 100 \%=105.18 \% &
\end{array}
$$

The iterations can be continued as tabulated below:

\boldsymbol{i}	\boldsymbol{x}_{3}	$\boldsymbol{\varepsilon}_{\boldsymbol{a}}$
0	0.731071	105.1785%
1	0.720767	1.4296%

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

2	0.721231	0.0643%
3	0.721230	0.0001%

7.4 Here are MATLAB sessions to determine the roots:

```
(a)
>> a=[1 -1 3 -2];
>> roots(a)
ans =
    0.1424 + 1.6661i
    0.1424 - 1.6661i
    0.7152
```

(b)
> $a=\left[\begin{array}{lllll}2 & 0 & 6 & 0 & 10\end{array}\right]$;
> roots (a)
ans $=$
$-0.6067+1.3668 i$
-0.6067 - $1.3668 i$
$0.6067+1.3668 i$
0.6067 - $1.3668 i$
(c)
>> $a=\left[\begin{array}{lllll}1 & -2 & 6 & -8 & 8\end{array}\right]$;
>> roots(a)
ans $=$
$-0.0000+2.0000 i$
-0.0000 - 2.0000i $1.0000+1.0000 i$ $1.0000-1.0000 i$
7.5 (a) A plot suggests 3 real roots: $0.44,2$ and 3.3.

Try $r=1$ and $s=-1$, and follow Example 7.3
$1^{\text {st }}$ iteration:

$$
\begin{array}{ll}
\Delta r=1.085 & \Delta s=0.887 \\
r=2.085 & s=-0.1129 \\
\frac{2^{\text {nd }} \text { iteration: }}{} & \\
\Delta r=0.4019 & \Delta s=-0.5565
\end{array}
$$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$$
\begin{array}{ll}
r=2.487 & s=-0.6694 \\
\frac{3^{\text {rd }} \text { iteration: }}{\Delta r=-0.0605} & \Delta s=-0.2064 \\
r=2.426 & s=-0.8758 \\
\frac{4^{\text {th }} \text { iteration: }}{\Delta r=0.00927} & \Delta s=0.00432 \\
r=2.436 & s=-0.8714 \\
\operatorname{root}_{1}=\frac{2.436+\sqrt{2.436^{2}+4(-0.8714)}}{2}=2 \\
\operatorname{root}_{2}=\frac{2.436-\sqrt{2.436^{2}+4(-0.8714)}}{2}=0.4357
\end{array}
$$

The remaining $\operatorname{root}_{3}=3.279$.
(b) Plot suggests 3 real roots at approximately $0.9,1.2$ and 2.3.

Try $r=2$ and $s=-0.5$, and follow Example 7.3
$1{ }^{\text {st }}$ iteration:

$$
\begin{array}{ll}
\hline \Delta r=0.2302 & \Delta s=-0.5379 \\
r=2.2302 & s=-1.0379
\end{array}
$$

$2^{\text {nd }}$ iteration:
$\Delta r=-0.1799 \quad \Delta s=-0.0422$
$r=2.0503 \quad s=-1.0801$
$3^{\text {rd }}$ iteration:
$\Delta r=0.0532 \quad \Delta s=-0.01641$
$r=2.1035 \quad s=-1.0966$
$4^{\text {th }}$ iteration:
$\Delta r=0.00253 \quad \Delta s=-0.00234$
$r=2.106 \quad s=-1.099$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$$
\begin{aligned}
& \operatorname{root}_{1}=\frac{2.106+\sqrt{2.106^{2}+4(-1.099)}}{2}=1.1525 \\
& \operatorname{root}_{2}=\frac{2.106-\sqrt{2.106^{2}+4(-1.099)}}{2}=0.9535
\end{aligned}
$$

The remaining root $_{3}=2.2947$
(c) Plot suggests 2 real roots at approximately -1 and 2.2. This means that there should also be 2 complex roots

Try $r=-1$ and $s=1$, and follow Example 7.3
$1^{\text {st }}$ iteration:
$\begin{array}{ll}\Delta r=2.171 & \Delta s=3.947 \\ r=1.171 & s=4.947\end{array}$
$2^{\text {nd }}$ iteration:
$\Delta r=-0.0483 \quad \Delta s=-2.260$
$r=1.123 \quad s=2.688$
$3^{\text {rd }}$ iteration:
$\Delta r=-0.0931 \quad \Delta s=-0.6248$
$r=1.030 \quad s=2.063$
$4^{\text {th }}$ iteration:
$\Delta r=-0.0288 \quad \Delta s=-0.0616$
$r=1 \quad s=2$
$\operatorname{root}_{1}=\frac{1+\sqrt{1^{2}+4(2)}}{2}=2$
$\operatorname{root}_{2}=\frac{1-\sqrt{1^{2}+4(2)}}{2}=-1$
The remaining roots are $1+2 i$ and $1-2 i$.
7.6 Here is a VBA program to implement the Müller algorithm and solve Example 7.2.

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

```
Option Explicit
Sub TestMull()
Dim maxit As Integer, iter As Integer
Dim h As Double, xr As Double, eps As Double
\(\mathrm{h}=0.1\)
\(\mathrm{xr}=5\)
\(\mathrm{eps}=0.001\)
maxit \(=20\)
Call Muller(xr, h, eps, maxit, iter)
MsgBox "root = " \& xr
MsgBox "Iterations: " \& iter
End Sub
Sub Muller(xr, h, eps, maxit, iter)
Dim x0 As Double, x1 As Double, x2 As Double
Dim h0 As Double, h1 As Double, d0 As Double, d1 As Double
Dim a As Double, b As Double, c As Double
Dim den As Double, rad As Double, dxr As Double
\(\mathrm{x} 2=\mathrm{xr}\)
\(\mathrm{x} 1=\mathrm{xr}+\mathrm{h} * \mathrm{xr}\)
\(x 0=x r-h * x r\)
Do
    iter = iter + 1
    h0 = x1 - x0
    h1 \(=x 2-x 1\)
    \(\mathrm{d} 0=(\mathrm{f}(\mathrm{x} 1)-\mathrm{f}(\mathrm{x} 0)) / \mathrm{h} 0\)
    \(d 1=(f(x 2)-f(x 1)) / h 1\)
    \(a=(d 1-d 0) /(h 1+h 0)\)
    \(\mathrm{b}=\mathrm{a}\) * h1 + d1
    \(c=f(x 2)\)
    rad \(=\operatorname{Sqr}(\mathrm{b} * \mathrm{~b}-4\) * a * c\()\)
    If Abs (b + rad) > Abs (b - rad) Then
        den \(=\mathrm{b}+\mathrm{rad}\)
    Else
        den = b - rad
    End If
    \(\mathrm{dxr}=-2\) * \(\mathrm{c} / \mathrm{den}\)
    \(\mathrm{xr}=\mathrm{x} 2+\mathrm{dxr}\)
    If Abs(dxr) < eps * xr Or iter >= maxit Then Exit Do
    \(\mathrm{x} 0=\mathrm{x} 1\)
    \(\mathrm{x} 1=\mathrm{x} 2\)
    \(\mathrm{x} 2=\mathrm{xr}\)
Loop
End Sub
Function \(\mathrm{f}(\mathrm{x})\)
\(\mathrm{f}=\mathrm{x} \wedge 3-13\) * \(\mathrm{x}-12\)
End Function
```

When this program is run, it yields the correct result of 4 in 3 iterations.
7.7 The plot suggests a real root at 0.7.

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Using initial guesses of $x_{0}=0.63, x_{1}=0.77$ and $x_{2}=0.7$, the software developed in Prob. 7.6 yields a root of 0.715225 in 2 iterations.
7.8 Here is a VBA program to implement the Bairstow algorithm to solve Example 7.3.

```
Option Explicit
Sub PolyRoot()
Dim n As Integer, maxit As Integer, ier As Integer, i As Integer
Dim a(10) As Double, re(10) As Double, im(10) As Double
Dim r As Double, s As Double, es As Double
n}=
a(0)=1.25: a(1)= -3.875: a(2) = 2.125:a(3)=2.75:a(4)=-3.5:a(5)=1
maxit = 20
es = 0.0001
r = -1
s = -1
Call Bairstow(a(), n, es, r, s, maxit, re(), im(), ier)
For i = 1 To n
    If im(i) >= 0 Then
            MsgBox re(i) & " + " & im(i) & "i"
        Else
            MsgBox re(i) & " - " & Abs(im(i)) & "i"
    End If
Next i
End Sub
Sub Bairstow(a, nn, es, rr, ss, maxit, re, im, ier)
Dim iter As Integer, n As Integer, i As Integer
Dim r As Double, s As Double, ea1 As Double, ea2 As Double
Dim det As Double, dr As Double, ds As Double
Dim r1 As Double, i1 As Double, r2 As Double, i2 As Double
Dim b(10) As Double, c(10) As Double
r = rr
S = SS
n = nn
ier = 0
ea1 = 1
ea2 = 1
Do
    If n < 3 Or iter >= maxit Then Exit Do
    iter = 0
    Do
        iter = iter + 1
        b(n) = a(n)
        b(n-1) = a(n - 1) + r * b (n)
        c(n) = b (n)
        c(n - 1) = b(n - 1) + r* c(n)
        For i = n - 2 To 0 Step -1
            b(i) = a(i) +r* b(i + 1) + s * b (i + 2)
            c(i) = b(i) +r*c(i + 1) + s * c(i + 2)
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

```
        Next i
        det =c(2) * c(2) - c(3) * c(1)
        If det <> 0 Then
            dr = (-b (1) * c(2) + b(0) * c(3)) / det
            ds = (-b (0) * c(2) + b(1) * c(1)) / det
            r = r + dr
            s=s}+d
            If r <> 0 Then eal = Abs(dr / r) * 100
            If s <> 0 Then ea2 = Abs(ds / s) * 100
        Else
            r = r + 1
            s = s + 1
            iter = 0
            End If
            If eal <= es And ea2 <= es Or iter >= maxit Then Exit Do
    Loop
    Call Quadroot(r, s, r1, i1, r2, i2)
    re(n) = rl
    im(n) = i1
    re(n - 1) = r2
    im(n - 1) = i2
    n=n-2
    For i =0 To n
        a(i) = b(i + 2)
    Next i
Loop
If iter < maxit Then
    If n = 2 Then
        r = -a(1) / a(2)
        s = -a(0) / a(2)
        Call Quadroot(r, s, r1, i1, r2, i2)
        re(n) = r1
        im(n) = il
        re(n - 1) =r2
        im(n - 1) = i2
    Else
        re(n) = -a(0) / a(1)
        im(n) = 0
    End If
Else
    ier = 1
End If
End Sub
Sub Quadroot(r, s, r1, i1, r2, i2)
Dim disc
disc = r ^ 2 + 4 * s
If disc > 0 Then
    r1 = (r + Sqr(disc)) / 2
    r2 = (r - Sqr(disc)) / 2
    i1 = 0
    i2=0
Else
    r1 =r / 2
    r2 = r1
    i1 = Sqr(Abs(disc)) / 2
    i2 = -i1
End If
End Sub
```

When this program is run, it yields the correct result of $-1,0.5,2,1+0.5 i$, and $1-0.5 i$.
PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
7.9 Using the software developed in Prob. 7.8 the following results should be generated for the three parts of Prob. 7.5:
(a) $3.2786,2.0000,0.4357$
(b) $2.2947,1.1525,0.9535$
(c) $2.0000,1.0000+2.0000 i, 1.0000-2.0000 i,-1$
7.10 The goal seek set up is

The result is

	B2	\checkmark	$f_{x}=B 1 \times 3.5$				
	A	B	C	D	E	F	G
1	x	3.497367	Goal Seek Status				x
2	$x^{\wedge} 3.5$	80.00077					
3			Goal Seeking with Cell B2 found a solution.				OK
4							
5			Target value: 80				Cancel
6							
7			Current value: 80.00077448				Step
8							
9							Pause
10							

7.11 The goal seek set up is shown below. Notice that we have named the cells containing the parameter values with the labels in column A.

The result is 58.717 kg as shown here:

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

B10		$f_{x}=\mathrm{g}^{*} m / \mathrm{c}_{-}^{*}\left(1-\mathrm{EXP}\left(-\mathrm{c}_{-} / \mathrm{m}^{*} \mathrm{t}\right)\right)^{-\mathrm{v}}$									
	A	B	C	D	E	F	G	H			
1	Prob. 7.11			Goal Seek Status							
2											
3	g	9.8	m/s2	Goal Seeking with Cell B10 found a solution.				OK			
4	c	14	kg / s								
5	t	8	s				Target value: 0				Cancel
6	v	35									
7				Current value:	-3.62656E-06			Step			
8	m	58.71699	kg					Pause			
9											
10	$\mathrm{f}(\mathrm{v})$	3.6E-06									

7.12 The Solver set up is shown below using initial guesses of $x=y=1$. Notice that we have rearranged the two functions so that the correct values will drive both to zero. We then drive the sum of their squared values to zero by varying x and y. This is done because a straight sum would be zero if $f_{1}(x, y)=-f_{2}(x, y)$.

The result is

	A	B	C	D	E	F	G	H	1		J
1	Prob. 7.12			Solve							
2				Solver							
3	x	-0.188313433		Solver found a solution. All constraints and optimality conditions are satisfied.					Reports		
4	y	0.596407992									
5				Keep Solver SolutionRestore Original Values					Answer Sensitivity Limits		
6		function	function^2								
7	$f 1(x, y)=-x^{\wedge} 2+x+0.75-y$	0.000740524	5.484E-07								
8	$f 2(x, y)=x^{\wedge} 2-y-5 x y$	0.00061214	$3.747 \mathrm{E}-07$								
9						Cancel	Save Scenario..			Help	
10		sum squares	9.231E-07								

7.13 A plot of the functions indicates two real roots at about $(1.8,3.6)$ and $(3.6,1.8)$.

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

The Solver set up is shown below using initial guesses of $(2,4)$. Notice that we have rearranged the two functions so that the correct values will drive both to zero. We then drive the sum of their squared values to zero by varying x and y . This is done because a straight sum would be zero if $f_{1}(x, y)=-f_{2}(x, y)$.

The result is

For guesses of $(4,2)$ the result is $(3.5691,1.8059)$.
7.14 MATLAB session:

```
>> a = poly([[4 -2 1 -5 7])
a =
    1 
>> polyval(a,1)
ans =
    0
>> polyder(a)
ans =
    5 -20
>> b = poly([[4 -2])
b =
    1 lll
>> [d,e] = deconv(a,b)
d =
    1 -3 -33 
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

```
e =
    0}00\mp@code{0
>> roots(d)
ans =
            7.0000
    -5.0000
    1.0000
>> conv(d,b)
ans =
    1 lllllll
>> r = roots(a)
r =
    7.0000
    -5.0000
    4.0000
    -2.0000
    1.0000
```


7.15 MATLAB sessions:

Prob. 7.5a:

```
>> a=[[.7 -4 6.2 -2];
>> roots(a)
ans =
    3.2786
    2.0000
    0.4357
```

Prob. 7.5b:

```
>> a=[-3.704 16.3 -21.97 9.34];
>> roots(a)
ans =
    2.2947
    1.1525
    0.9535
```

Prob. 7.5c:

```
>> a=[1 -3 5 -1 -10];
>> roots(a)
ans =
    2.0000
    1.0000 + 2.0000i
    1.0000 - 2.0000i
    -1.0000
```

7.16 Here is a program written in Fortran 90:

```
PROGRAM Root
Use IMSL !This establishes the link to the IMSL libraries
Implicit None !forces declaration of all variables
Integer::nroot
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

```
Parameter(nroot=1)
Integer::itmax=50
Real::errabs=0.,errrel=1.E-5,eps=0., eta=0.
Real::f,x0(nroot) ,x(nroot)
External f
Integer::info(nroot)
Print *, "Enter initial guess"
Read *, x0
Call ZReal(f,errabs,errrel,eps,eta,nroot,itmax,x0,x,info)
Print *, "root = ", x
Print *, "iterations = ", info
End
Function f(x)
Implicit None
Real::f,x
f = x**3-x**2+3.*x-2.
End
```

The output for Prob. 7.4 a would look like

```
Enter initial guess
. }
    root = 0.7152252
    iterations = 6
Press any key to continue
```

The other parts of Probs 7.4 have complex roots and therefore cannot be evaluated with ZReal. The roots for Prob. 7.5 can be evaluated by changing the function and obtaining the results:
7.5 (a) 2, 0.4357, 3.279
7.5 (b) 1.1525, 0.9535, 2.295
7.5 (c) $2,-1$
$7.17 x_{2}=0.62, x_{1}=0.64, x_{0}=0.60$

$$
\begin{aligned}
& h_{0}=0.64-0.60=0.04 \\
& h_{1}=0.62-0.64=-0.02 \\
& \delta_{0}=\frac{60-20}{0.64-0.60}=1000 \\
& \delta_{1}=\frac{50-60}{0.62-0.64}=500 \\
& a=\frac{\delta_{1}-\delta_{0}}{h_{1}+h_{0}}=\frac{500-1000}{-0.02+0.04}=25000 \\
& b=a h_{1}+\delta_{1}=-25000(-0.02)+500=1000
\end{aligned}
$$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$$
\begin{aligned}
& c=50 \\
& \sqrt{b^{2}-4 a c}=\sqrt{1000^{2}-4(-25000) 50}=2449.49 \\
& t_{0}=0.62+\frac{-2(50)}{1000+2449.49}=0.591
\end{aligned}
$$

Therefore, the pressure was zero at 0.591 seconds. The result is graphically displayed below:

7.18 (a) First we will determine the root graphically

```
>> x=-1:0.01:5;
>> f=x.^3+3.5.*x.^2-40;
>> plot(x,f);grid
```


The zoom in tool can be used several times to home in on the root. For example, as shown in the following plot, a real root appears to occur at $x=2.567$:

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

(b) The roots function yields both real and complex roots:

```
>> a=[1 3.5 0 -40];
>> roots(a)
ans =
    -3.0338 + 2.5249i
    -3.0338 - 2.5249i
        2.5676
```

7.19 (a) Excel Solver Solution: The 3 functions can be set up as a roots problems:
$f_{1}(a, u, v)=a^{2}-u^{2}+2 v^{2}=0$
$f_{2}(a, u, v)=u+v-2=0$
$f_{3}(a, u, v)=a^{2}-2 a-u=0$

If you use initial guesses of $a=-1, u=1$, and $v=-1$, the Solver finds another solution at $a=$ $-1.6951, u=6.2634$, and $v=-4.2636$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

(b) Symbolic Manipulator Solution:

MATLAB:

```
>> syms a u v
>>S=solve(u^2-2* v^2-a^2,u+v-2,a^2-2*a-u);
>> double(S.a)
ans =
    3.0916 + 0.3373i
    3.0916 - 0.3373i
    -0.4879
    -1.6952
>> double(S.u)
ans =
    3.2609 + 1.4108i
    3.2609 - 1.4108i
    1.2140
    6.2641
>> double(S.v)
ans =
    -1.2609 - 1.4108i
    -1.2609 + 1.4108i
    0.7860
    -4.2641
```


Mathcad:

Problem 7.19 (Mathcad)

$$
\begin{array}{lll}
\mathrm{f}(\mathrm{a}, \mathrm{u}, \mathrm{v}):=\mathrm{u}^{2}-2 \cdot \mathrm{v}^{2}-\mathrm{a}^{2} & \mathrm{~g}(\mathrm{a}, \mathrm{u}, \mathrm{v}):=\mathrm{u}+\mathrm{v}-2 & \mathrm{~h}(\mathrm{a}, \mathrm{u}, \mathrm{v}):=\mathrm{a}^{2}-2 \cdot \mathrm{a}-\mathrm{u} \\
\mathrm{a}:=-1 & \mathrm{u}:=1 & \mathrm{v}:=1
\end{array}
$$

Given
$\mathrm{f}(\mathrm{a}, \mathrm{u}, \mathrm{v})=0 \quad \mathrm{~g}(\mathrm{a}, \mathrm{u}, \mathrm{v})=0 \quad \mathrm{~h}(\mathrm{a}, \mathrm{u}, \mathrm{v})=0$
$\operatorname{Find}(a, u, v)=\left(\begin{array}{c}-0.4879 \\ 1.214 \\ 0.786\end{array}\right)$
$\mathrm{a}:=-1$
$\mathrm{u}:=6$
$\mathrm{v}:=-4$

Given
$\mathrm{f}(\mathrm{a}, \mathrm{u}, \mathrm{v})=0 \quad \mathrm{~g}(\mathrm{a}, \mathrm{u}, \mathrm{v})=0 \quad \mathrm{~h}(\mathrm{a}, \mathrm{u}, \mathrm{v})=0$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
$\operatorname{Find}(\mathrm{a}, \mathrm{u}, \mathrm{v})=\left(\begin{array}{c}-1.6952 \\ 6.2641 \\ -4.2641\end{array}\right)$
$\mathrm{a}:=3+\mathrm{i}$
$\mathrm{u}:=3+\mathrm{i}$
$\mathrm{v}:=-1-\mathrm{i}$

Given
$\mathrm{f}(\mathrm{a}, \mathrm{u}, \mathrm{v})=0 \quad \mathrm{~g}(\mathrm{a}, \mathrm{u}, \mathrm{v})=0 \quad \mathrm{~h}(\mathrm{a}, \mathrm{u}, \mathrm{v})=0$
$\operatorname{Find}(a, u, v)=\left(\begin{array}{c}3.0916+0.3373 i \\ 3.2609+1.4108 i \\ -1.2609-1.4108 i\end{array}\right)$

Therefore, we see that the two real-valued solutions for a, u, and v are $(-0.4879,1.2140,0.7860)$ and $(-1.6952,6.2641,-4.2641)$. In addition, MATLAB and Mathcad also provide the complex solutions as well.
7.20 MATLAB can be used to determine the roots of the numerator and denominator:

```
>> n=[1 12.5 50.5 66];
>> roots(n)
ans =
    -5.5000
    -4.0000
    -3.0000
>> d=[1 19 122 296 192];
>> roots(d)
ans =
    -8.0000
    -6.0000
    -4.0000
    -1.0000
```

The transfer function can be written as

$$
G(s)=\frac{(s+5.5)(s+4)(s+3)}{(s+8)(s+6)(s+4)(s+1)}
$$

7.21

function root = bisection(func, xl, xu,es, maxit)
\% root = bisection(func, xl, xu,es,maxit):
uses bisection method to find the root of a function
input:
func $=$ name of function
xl, xu = lower and upper guesses
es = (optional) stopping criterion (\%)
maxit $=$ (optional) maximum allowable iterations
output:
root $=$ real root

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

```
if func(xl)*func(xu)>0 %if guesses do not bracket a sign change
    disp('no bracket') %display an error message
    return %and terminate
end
% if necessary, assign default values
if nargin<5, maxit=50; end %if maxit blank set to 50
if nargin<4, es=0.001; end %if es blank set to 0.001
% bisection
iter = 0;
xr = xl;
while (1)
    xrold = xr;
    xr = (xl + xu)/2;
    iter = iter + 1;
    if xr ~= 0, ea = abs((xr - xrold)/xr) * 100; end
    test = func(xl)*func(xr);
    if test < 0
            xu = xr;
    elseif test > 0
                xl = xr;
    else
            ea = 0;
    end
    if ea <= es | iter >= maxit, break, end
end
root = xr;
```

The following is a MATLAB session that uses the function to solve Example 5.3 with $\varepsilon_{s}=$ 0.0001.

```
>> fcd=inline('(9.81*68.1/cd)*(1-exp(-0.146843*cd))-40','cd');
>> format long
>> bisection(fcd,5,15,0.0001)
ans =
    14.80114936828613
```

7.22

```
function root = falsepos(func,xl,xu,es,maxit)
% falsepos(func,xl,xu,es,maxit):
            uses the false position method to find the root of the function func
    input:
            func = name of function
            xl, xu = lower and upper guesses
            es = (optional) stopping criterion (%) (default = 0.001)
            maxit = (optional) maximum allowable iterations (default = 50)
    output:
            root = real root
if func(xl)*func(xu)>0 %if guesses do not bracket a sign change
    error('no bracket') %display an error message and terminate
end
% default values
if nargin<5, maxit=50; end
if nargin<4, es=0.001; end
% false position
iter = 0;
xr = xl;
while (1)
    xrold = xr;
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

```
    xr = xu - func(xu)*(xl - xu)/(func(xl) - func(xu));
    iter = iter + 1;
    if xr ~= 0, ea = abs((xr - xrold)/xr) * 100; end
    test = func(xl)*func(xr);
    if test < 0
            xu = xr;
    elseif test > 0
        xl = xr;
    else
        ea = 0;
    end
    if ea <= es | iter >= maxit, break, end
end
root = xr;
```

The following is a MATLAB session that uses the function to solve Example 5.5:

```
>> fcd=inline('(9.81*68.1/cd)*(1-exp(-0.146843*cd))-40','cd');
>> format long
>> falsepos(fcd,5,15,0.0001)
ans =
    14.80114660933235
```


7.23

```
function root = newtraph(func,dfunc,xr,es,maxit)
```

\% root $=$ newtraph (func, dfunc, xguess,es, maxit):
\% uses Newton-Raphson method to find the root of a function
\% input:
\% func $=$ name of function
\% dfunc $=$ name of derivative of function
\% xguess = initial guess
\% es = (optional) stopping criterion (\%)
\% maxit $=$ (optional) maximum allowable iterations
\% output:
\% root $=$ real root
\% if necessary, assign default values
if nargin<5, maxit=50; end \quad if maxit blank set to 50
if nargin<4, es=0.001; end \%if es blank set to 0.001
\% Newton-Raphson
iter $=0$;
while (1)
xrold = xr;
$\mathrm{xr}=\mathrm{xr}-\mathrm{func}(\mathrm{xr}) /$ dfunc(xr);
iter $=$ iter +1 ;
if $\mathrm{xr} \sim=0$, ea $=\operatorname{abs}((\mathrm{xr}-\mathrm{xrold}) / \mathrm{xr}) * 100$; end
if ea <= es | iter $>=$ maxit, break, end
end
root $=x r$;

The following is a MATLAB session that uses the function to solve Example 6.3 with $\varepsilon_{s}=$ 0.0001 .

```
>> format long
>> f=inline('exp(-x) -x','x');
>> df=inline('-exp(-x)-1','x');
>> newtraph(f,df,0)
ans =
    0.56714329040978
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

7.24

```
function root = secant(func,xrold,xr,es,maxit)
```

\% secant (func, xrold, xr,es, maxit) :
\% uses secant method to find the root of a function
\% input:
\% func = name of function
func = name of function
xrold, xr = initial guesses
es $=$ (optional) stopping criterion (\%)
maxit = (optional) maximum allowable iterations
output:
\% root = real root
\% if necessary, assign default values
if nargin<5, maxit=50; end \%if maxit blank set to 50
if nargin<4, es=0.001; end \%if es blank set to 0.001
\% Secant method
iter = 0;
while (1)
$\left.\mathrm{xrn}=\mathrm{xr}-\mathrm{func}(\mathrm{xr}) *(\mathrm{xrold}-\mathrm{xr}) /\left(\mathrm{func}(\mathrm{xrol})^{\prime}\right)-\mathrm{func}(\mathrm{xr})\right)$;
iter = iter + 1;
if $\operatorname{xrn} \sim=0$, ea $=a b s((x r n-x r) / x r n) * 100$; end
if ea <= es | iter >= maxit, break, end
xrold = xr;
$\mathrm{xr}=\mathrm{xrn}$;
end
root $=x r n$;

Test by solving Example 6.6:

```
>> format long
>> f=inline('exp(-x)-x','x');
>> secant(f,0,1)
ans =
    0.56714329040970
```

7.25

```
function root = modsec(func,xr,delta,es,maxit)
% modsec(func,xr,delta,es,maxit) :
        uses modified secant method to find the root of a function
    input:
        func = name of function
        xr = initial guess
        delta = perturbation fraction
        es = (optional) stopping criterion (%)
        maxit = (optional) maximum allowable iterations
    output:
% root = real root
% if necessary, assign default values
if nargin<5, maxit=50; end %if maxit blank set to 50
if nargin<4, es=0.001; end %if es blank set to 0.001
if nargin<3, delta=1E-5; end %if delta blank set to 0.00001
% Secant method
iter = 0;
while (1)
    xrold = xr;
    xr = xr - delta*xr*func(xr)/(func(xr+delta*xr)-func(xr));
    iter = iter + 1;
    if xr ~= 0, ea = abs((xr - xrold)/xr) * 100; end
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

```
    if ea <= es | iter >= maxit, break, end
end
root = xr;
```

Test by solving Example 6.8:

```
>> format long
>> f=inline('exp(-x) -x','x');
>> modsec(f,1,0.01)
ans =
    0.56714329027265
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

