CHAPTER 8

8.1 Ideal gas law:
$v=\frac{R T}{p}=\frac{0.082054(400)}{2.5}=13.12864$
van der Waals equation:
Determine the root of
$f(v)=\left(p+\frac{a}{v^{2}}\right)(v-b)-R T$
$f(v)=\left(2.5+\frac{12.02}{v^{2}}\right)(v-0.08407)-0.082054(400)$
Any of the techniques in Chaps 5 or 6 can be used to determine the root as $v=12.8407$ $\mathrm{L} / \mathrm{mol}$. The Newton-Raphson method would be a good choice because (a) the equation is relatively simple to differentiate and (b) the ideal gas law provides a good initial guess. The Newton-Raphson method can be formulated as

$$
v_{i+1}=v_{i}-\frac{\left(p+\frac{a}{v_{i}^{2}}\right)\left(v_{i}-b\right)-R T}{\left(p+\frac{a}{v_{i}^{2}}\right)-\left(v_{i}-b\right) \frac{2 a}{v_{i}^{3}}}
$$

Using the ideal gas law for the initial guess results in an accurate root determination in a few iterations:

\boldsymbol{i}	$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$	$\boldsymbol{\varepsilon}_{\boldsymbol{a}}$
0	13.12864	0.699518	2.431156	
1	12.84091	0.000441	2.428057	2.2407%
2	12.84073	$1.84 \mathrm{E}-10$	2.428055	0.0014%
3	12.84073	0	2.428055	0.0000%

8.2 The function to be solved is
$f(R)=\ln \frac{1+R\left(1-X_{A f}\right)}{R\left(1-X_{A f}\right)}-\frac{R+1}{R\left[1+R\left(1-X_{A f}\right)\right]}=0$
or substituting $X_{A f}=0.95$,

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
$f(R)=\ln \frac{1+0.05 R}{R(0.05)}-\frac{R+1}{R(1+0.05 R)}=0$

A plot of the function indicates a root at about $R=0.3$

Bisection with initial guesses of 0.01 and 1 can be used to determine a root of 0.30715 after 16 iterations with $\varepsilon_{a}=0.005 \%$.
8.3 The function to be solved is

$$
f(x)=\frac{x}{1-x} \sqrt{\frac{7}{2+x}}-0.04=0
$$

A plot of the function indicates a root at about $x=0.02$.

Because the function is so linear, false position is a good choice. Using initial guesses of 0.01 and 0.03 , the first iteration is
$x_{r}=0.03-\frac{0.017432(0.01-0.03)}{-0.02115-0.017432}=0.020964$
After 3 iterations, the result is 0.021041 with $\varepsilon_{a}=0.003 \%$.
8.4 The function to be solved is

$$
f(t)=12\left(1-e^{-0.04 t}\right)+5 e^{-0.04 t}-10.2=0
$$

A plot of the function indicates a root at about $t=34$.

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Bisection with initial guesses of 0 and 50 can be used to determine a root of 33.95309 after 16 iterations with $\varepsilon_{a}=0.002 \%$.
8.5 The function to be solved is

$$
f(x)=\frac{(4+x)}{(42-2 x)^{2}(28-x)}-0.016=0
$$

(a) A plot of the function indicates a root at about $x=16$.

(b) The shape of the function indicates that false position would be a poor choice (recall Fig. 5.14). Bisection with initial guesses of 0 and 20 can be used to determine a root of 15.85938 after 8 iterations with $\varepsilon_{a}=0.493 \%$. Note that false position would have required 68 iterations to attain comparable accuracy.

\boldsymbol{i}	$\boldsymbol{x}_{\boldsymbol{I}}$	$\boldsymbol{x}_{\boldsymbol{u}}$	$\boldsymbol{x}_{\boldsymbol{r}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{\prime}}\right)$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{r}}\right)$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{\prime}}\right) \times \boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{r}}\right)$	$\boldsymbol{\boldsymbol { \varepsilon } _ { \mathbf { a } }}$
1	0	20	10	-0.01592	-0.01439	0.000229	100.000%
2	10	20	15	-0.01439	-0.00585	$8.42 \mathrm{E}-05$	33.333%
3	15	20	17.5	-0.00585	0.025788	-0.00015	14.286%
4	15	17.5	16.25	-0.00585	0.003096	$-1.8 \mathrm{E}-05$	7.692%
5	15	16.25	15.625	-0.00585	-0.00228	$1.33 \mathrm{E}-05$	4.000%
6	15.625	16.25	15.9375	-0.00228	0.000123	$-2.8 \mathrm{E}-07$	1.961%
7	15.625	15.9375	15.78125	-0.00228	-0.00114	$2.59 \mathrm{E}-06$	0.990%
8	15.78125	15.9375	15.85938	-0.00114	-0.00052	$5.98 \mathrm{E}-07$	0.493%

8.6 The functions to be solved are

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$$
\begin{aligned}
& K_{1}=\frac{\left(c_{c, 0}+x_{1}+x_{2}\right)}{\left(c_{a, 0}-2 x_{1}-x_{2}\right)^{2}\left(c_{b, 0}-x_{1}\right)} \\
& K_{2}=\frac{\left(c_{c, 0}+x_{1}+x_{2}\right)}{\left(c_{a, 0}-2 x_{1}-x_{2}\right)\left(c_{d, 0}-x_{2}\right)}
\end{aligned}
$$

or

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}\right)=\frac{5+x_{1}+x_{2}}{\left(50-2 x_{1}-x_{2}\right)^{2}\left(20-x_{1}\right)}-4 \times 10^{-4} \\
& f_{2}\left(x_{1}, x_{2}\right)=\frac{\left(5+x_{1}+x_{2}\right)}{\left(50-2 x_{1}-x_{2}\right)\left(10-x_{2}\right)}-3.7 \times 10^{-2}
\end{aligned}
$$

Graphs can be generated by specifying values of x_{1} and solving for x_{2} using a numerical method like bisection.

first equation		second equation	
$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{X}_{\mathbf{2}}$	$\boldsymbol{x}_{\mathbf{1}}$	$\boldsymbol{x}_{\mathbf{2}}$
0	8.6672	0	4.4167
1	6.8618	1	3.9187
2	5.0649	2	3.4010
3	3.2769	3	2.8630
4	1.4984	4	2.3038
5	-0.2700	5	1.7227

These values can then be plotted to yield

Therefore, the root seems to be at about $x_{1}=3.3$ and $x_{2}=2.7$. Employing these values as the initial guesses for the two-variable Newton-Raphson method gives
$f_{1}(3.3,2.7)=-2.36 \times 10^{-6}$
$f_{2}(3.3,2.7)=2.33 \times 10^{-5}$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$$
\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}}=9.9 \times 10^{-5} & \frac{\partial f_{2}}{\partial x_{1}}=5.185 \times 10^{-3} \\
\frac{\partial f_{1}}{\partial x_{2}}=5.57 \times 10^{-5} & \frac{\partial f_{2}}{\partial x_{2}}=9.35 \times 10^{-3} \\
|J|=6.37 \times 10^{-7} & \\
x_{1}=3.3-\frac{-2.36 \times 10^{-6}\left(9.35 \times 10^{-3}\right)-2.33 \times 10^{-5}\left(5.57 \times 10^{-5}\right)}{6.37 \times 10^{-7}}=3.3367 \\
x_{2}=2.7-\frac{2.33 \times 10^{-5}\left(9.9 \times 10^{-5}\right)-\left(-2.36 \times 10^{-6}\right)\left(5.185 \times 10^{-3}\right)}{6.37 \times 10^{-7}}=2.677
\end{array}
$$

The second iteration yields $x_{1}=3.3366$ and $x_{2}=2.677$, with a maximum approximate error of 0.003%.
8.7 Using the given values, $a=12.6126$ and $b=0.0018707$. Therefore, the roots problem to be solved is

$$
f(v)=\frac{0.518(223)}{(v-0.0018707)}-\frac{12.6126}{v(v+0.0018707 \sqrt{223}}-65000
$$

A plot indicates a root at about 0.0028 .

Using initial guesses of 0.002 and 0.004 , bisection can be employed to determine the root as 0.00275 after 12 iterations with $\varepsilon_{a}=0.018 \%$. The mass of methane contained in the tank can be computed as $3 / 0.00275=1091 \mathrm{~kg}$.
8.8 Using the given values, the roots problem to be solved is

$$
f(h)=\left[4 \cos ^{-1}\left(\frac{2-h}{2}\right)-(2-h) \sqrt{4 h-h^{2}}\right] 5-8.5=0
$$

A plot indicates a root at about 0.8.

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

A numerical method can be used to determine that the root is 0.77194 .
8.9 Using the given values, the roots problem to be solved is
$f(h)=\frac{\pi h^{2}(3-h)}{3}-0.75=0$
A plot indicates a root at about 0.52 .

A numerical method can be used to determine that the root is 0.53952 .
8.10 The best way to approach this problem is to use the graphical method displayed in Fig. 6.3. For the first version, we plot
$y_{1}=h \quad$ and $\quad y_{2}=\sqrt{\frac{h^{3}+0.7162}{3}}$
versus the range of h. Note that for the sphere, h ranges from 0 to $2 r$. As displayed below, this version will always converge.

For the second version, we plot
$y_{1}=h \quad$ and $\quad y_{2}=\sqrt[3]{3 h^{2}-0.7162}$
versus the range of h. As displayed below, this version is not convergent.

8.11 Substituting the parameter values yields

$$
20 \frac{\varepsilon^{3}}{1-\varepsilon}=150 \frac{1-\varepsilon}{1000}+1.75
$$

This can be rearranged and expressed as a roots problem
$f(\varepsilon)=0.15(1-\varepsilon)+1.75-20 \frac{\varepsilon^{3}}{1-\varepsilon}=0$
A plot of the function suggests a root at about 0.38 .

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

But suppose that we do not have a plot. How do we come up with a good initial guess? The void fraction (the fraction of the volume that is not solid; i.e. consists of voids) varies between 0 and 1 . As can be seen, a value of 1 (which is physically unrealistic) causes a division by zero. Therefore, two physically-based initial guesses can be chosen as 0 and 0.99 . Note that the zero is not physically realistic either, but since it does not cause any mathematical difficulties, it is OK. Applying bisection yields a result of $\varepsilon=0.384211$ in 15 iterations with an absolute approximate relative error of $7.87 \times 10^{-3} \%$.
8.12 (a) The Reynolds number can be computed as
$\operatorname{Re}=\frac{\rho V D}{\mu}=\frac{1.23(40) 0.005}{1.79 \times 10^{-5}}=13743$
In order to find f, we must determine the root of the function $g(f)$

$$
g(f)=-2.0 \log \left(\frac{0.0000015}{3.7(0.005)}+\frac{2.51}{13743 \sqrt{f}}\right)-\frac{1}{\sqrt{f}}=0
$$

As mentioned in the problem a good initial guess can be obtained from the Blasius formula

$$
f=\frac{0.316}{13743^{0.25}}=0.029185
$$

Using this guess, a root of 0.028968 can be obtained with an approach like the modified secant method. This result can then be used to compute the pressure drop as

$$
\Delta p=0.028968 \frac{0.2(1.23)(40)^{2}}{2(0.005)}=1140.17 \mathrm{~Pa}
$$

(b) For the rougher steel pipe, we must determine the root of

$$
g(f)=-2.0 \log \left(\frac{0.000045}{3.7(0.005)}+\frac{2.51}{13743 \sqrt{f}}\right)-\frac{1}{\sqrt{f}}=0
$$

Using the same initial guess as in (a), a root of 0.04076 can be obtained. This result can then be used to compute the pressure drop as

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
$\Delta p=0.04076 \frac{0.2(1.23)(40)^{2}}{2(0.005)}=1604.25 \mathrm{~Pa}$
Thus, as would be expected, the pressure drop is higher for the rougher pipe.
8.13 There are a variety of ways to solve this system of 5 equations

$$
\begin{align*}
& K_{1}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{CO}_{2}\right]} \tag{1}\\
& K_{2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CO}_{3}^{2-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]} \tag{2}\\
& K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \tag{3}\\
& c_{T}=\left[\mathrm{CO}_{2}\right]+\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{CO}_{3}^{2-}\right] \tag{4}\\
& \mathrm{Alk}=\left[\mathrm{HCO}_{3}^{-}\right]+2\left[\mathrm{CO}_{3}^{2-}\right]+\left[\mathrm{OH}^{-}\right]-\left[\mathrm{H}^{+}\right] \tag{5}
\end{align*}
$$

One way is to combine the equations to produce a single polynomial. Equations 1 and 2 can be solved for

$$
\left[\mathrm{CO}_{2}\right]=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{K_{1}} \quad\left[\mathrm{CO}_{3}^{2-}\right]=\frac{K_{2}\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}^{+}\right]}
$$

These results can be substituted into Eq. 4, which can be solved for
$\left[\mathrm{CO}_{2}\right]=F_{0} c_{T}$
$\left[\mathrm{HCO}_{3}^{-}\right]=F_{1} c_{T}$
$\left[\mathrm{CO}_{3}^{2-}\right]=F_{2} c_{T}$
where F_{0}, F_{1}, and F_{2} are the fractions of the total inorganic carbon in carbon dioxide, bicarbonate and carbonate, respectively, where

$$
F_{0}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{H}^{+}\right]^{2}+K_{1}\left[\mathrm{H}^{+}\right]+K_{1} K_{2}} \quad F_{1}=\frac{K_{1}\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}^{+}\right]^{2}+K_{1}\left[\mathrm{H}^{+}\right]+K_{1} K_{2}} \quad F_{2}=\frac{K_{1} K_{2}}{\left[\mathrm{H}^{+}\right]^{2}+K_{1}\left[\mathrm{H}^{+}\right]+K_{1} K_{2}}
$$

Now these equations, along with the Eq. 3 can be substituted into Eq. 5 to give $0=F_{1} c_{T}+2 F_{2} c_{T}+K_{w} /\left[\mathrm{H}^{+}\right]-\left[\mathrm{H}^{+}\right]-$Alk

Although it might not be apparent, this result is a fourth-order polynomial in $\left[\mathrm{H}^{+}\right]$.

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right]^{4}+\left(K_{1}+\mathrm{Alk}\right) } & {\left[\mathrm{H}^{+}\right]^{3}+\left(K_{1} K_{2}+\mathrm{Alk} K_{1}-K_{w}-K_{1} c_{T}\right)\left[\mathrm{H}^{+}\right]^{2} } \\
& +\left(\mathrm{Alk} K_{1} K_{2}-K_{1} K_{w}-2 K_{1} K_{2} c_{T}\right)\left[\mathrm{H}^{+}\right]-K_{1} K_{2} K_{w}=0
\end{aligned}
$$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Substituting parameter values gives

$$
\left[\mathrm{H}^{+}\right]^{4}+2.001 \times 10^{-3}\left[\mathrm{H}^{+}\right]^{3}-5.012 \times 10^{-10}\left[\mathrm{H}^{+}\right]^{2}-1.055 \times 10^{-19}\left[\mathrm{H}^{+}\right]-2.512 \times 10^{-31}=0
$$

This equation can be solved for $\left[\mathrm{H}^{+}\right]=2.51 \times 10^{-7}(\mathrm{pH}=6.6)$. This value can then be used to compute

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=\frac{10^{-14}}{2.51 \times 10^{-7}}=3.98 \times 10^{-8}} \\
& {\left[\mathrm{CO}_{2}\right]=\frac{\left(2.51 \times 10^{-7}\right)^{2}}{\left(2.51 \times 10^{-7}\right)^{2}+10^{-6.3}\left(2.51 \times 10^{-7}\right)+10^{-6.3} 10^{-10.3}} 3 \times 10^{-3}=0.33304\left(3 \times 10^{-3}\right)=0.001} \\
& {\left[\mathrm{HCO}_{3}^{-}\right]=\frac{10^{-6.3}\left(2.51 \times 10^{-7}\right)}{\left(2.51 \times 10^{-7}\right)^{2}+10^{-6.3}\left(2.51 \times 10^{-7}\right)+10^{-6.3} 10^{-10.3}} 3 \times 10^{-3}=0.666562\left(3 \times 10^{-3}\right)=0.002} \\
& {\left[\mathrm{CO}_{3}^{2-}\right]=\frac{10^{-6.3} 10^{-10.3}}{\left(2.51 \times 10^{-7}\right)^{2}+10^{-6.3}\left(2.51 \times 10^{-7}\right)+10^{-6.3} 10^{-10.3}} 3 \times 10^{-3}=0.00013\left\{3 \times 10^{-3}\right)=4 \times 10^{-7} \mathrm{M}}
\end{aligned}
$$

8.14 The integral can be evaluated as

$$
-\int_{C_{\text {in }}}^{C_{\text {out }}} \frac{K}{k_{\max } C}+\frac{1}{k_{\max }} d C=-\frac{1}{k_{\max }}\left[K \ln \left(\frac{C_{\mathrm{out}}}{C_{\mathrm{in}}}\right)+C_{\mathrm{out}}-C_{\mathrm{in}}\right]
$$

Therefore, the problem amounts to finding the root of

$$
f\left(C_{\text {out }}\right)=\frac{V}{F}+\frac{1}{k_{\max }}\left[K \ln \left(\frac{C_{\text {out }}}{C_{\text {in }}}\right)+C_{\text {out }}-C_{\text {in }}\right]
$$

Excel solver can be used to find the root:

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

	A	B	C	D	E	F	G	H	1		J			
1	Prob 8.14													
2				Solver Res						,				
3	F	40	L/s	Solver found a solution. All constraints and optimality conditions are satisfied.				Reports						
4	Cin	0.5	M											
5	K	0.1	M	© Keep Solver SolutionRestore Original Values							Answer Sensitivity Limits		A	
6	kmax	5.00E-03	/s											
7	V	500	L											
8														
9	Cout	0.448393658			Cancel		Save Scenario...		Help					
10				OK										
11	f(cout)	$6.89467 \mathrm{E}-07$												

8.15 (a) The function to be solved is

$$
f(t)=9 e^{-0.7 t} \cos (4 t)-3.5
$$

A plot of the function indicates a root at about $t=0.25$

(b) The Newton-Raphson method can be set up as

$$
t_{i+1}=t_{i}-\frac{9 e^{-0.7 t_{i}} \cos \left(4 t_{i}\right)-3.5}{-36 e^{-0.7 t_{i}} \sin \left(4 t_{i}\right)-6.3 \cos \left(4 t_{i}\right) e^{-0.7 t_{i}}}
$$

Using an initial guess of 0.3 ,

\boldsymbol{i}	\boldsymbol{t}	$\boldsymbol{f}(\boldsymbol{t})$	$\boldsymbol{f}(\boldsymbol{t})$	$\boldsymbol{\varepsilon}_{\mathrm{a}}$
0	0.3	-0.85651	-29.0483	
1	0.270514	-0.00335	-28.7496	10.899824%
2	0.270398	$-1.2 \mathrm{E}-07$	-28.7476	0.043136%
3	0.270398	0	-28.7476	0.000002%

(c) The secant method can be implemented with initial guesses of 0.3 ,

\boldsymbol{i}	\boldsymbol{t}_{i-1}	$\boldsymbol{f}\left(\boldsymbol{t}_{i-1}\right)$	$\boldsymbol{t}_{\boldsymbol{i}}$	$\boldsymbol{f}\left(\boldsymbol{t}_{\boldsymbol{i}}\right)$	$\boldsymbol{\varepsilon}_{\boldsymbol{a}}$
0	0.2	1.951189	0.4	-3.69862	
1	0.4	-3.69862	0.269071	0.038125	48.66%
2	0.269071	0.038125	0.270407	-0.00026	0.49%
3	0.270407	-0.00026	0.270398	$1.07 \mathrm{E}-07$	0.0034%

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
8.16 The function to be solved is
$f(P / A)=\frac{250}{1+0.4 / \cos [25 \sqrt{(P / A) / 200,000}]}-\frac{P}{A}$
A plot of the function indicates a root at about $P / A=163$.

A numerical method can be used to determine that the root is 163.4429.
8.17 The function to be solved is
$f\left(T_{A}\right)=\frac{T_{A}}{12} \cosh \left(\frac{600}{T_{A}}\right)+6-\frac{T_{A}}{12}-15$
A plot of the function indicates a root at about $T_{A}=1700$.

A numerical method can be used to determine that the root is 1684.365 .
8.18 This problem can be solved by determining the root of the derivative of the elastic curve

$$
\frac{d y}{d x}=0=\frac{w_{0}}{120 E I L}\left(-5 x^{4}+6 L^{2} x^{2}-L^{4}\right)
$$

Therefore, after substituting the parameter values, we must determine the root of

$$
f(x)=-5 x^{4}+2,160,000 x^{2}-1.296 \times 10^{11}=0
$$

A plot of the function indicates a root at about $x=270$.

Bisection can be used to determine the root. Here are the first few iterations:

\boldsymbol{i}	$\boldsymbol{x}_{\boldsymbol{l}}$	$\boldsymbol{x}_{\boldsymbol{u}}$	$\boldsymbol{x}_{\boldsymbol{r}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{r}}\right)$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{\prime}}\right) \times \boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{r}}\right)$	$\boldsymbol{\varepsilon}_{\boldsymbol{a}}$
1	0	500	250	$-1.3 \mathrm{E}+11$	$-1.4 \mathrm{E}+10$	$1.83 \mathrm{E}+21$	
2	250	500	375	$-1.4 \mathrm{E}+10$	$7.53 \mathrm{E}+10$	$-1.1 \mathrm{E}+21$	33.33%
3	250	375	312.5	$-1.4 \mathrm{E}+10$	$3.37 \mathrm{E}+10$	$-4.8 \mathrm{E}+20$	20.00%
4	250	312.5	281.25	$-1.4 \mathrm{E}+10$	$9.97 \mathrm{E}+09$	$-1.4 \mathrm{E}+20$	11.11%
5	250	281.25	265.625	$-1.4 \mathrm{E}+10$	$-2.1 \mathrm{E}+09$	$2.95 \mathrm{E}+19$	5.88%

After 20 iterations, the root is determined as $x=268.328$. This value can be substituted into Eq. (P8.18) to compute the maximum deflection as

$$
y=\frac{2.5}{120(50,000) 30,000(600)}\left(-(268.328)^{5}+720,000(268.328)^{3}-1.296 \times 10^{11}(268.328)\right)=-0.51519
$$

8.19 (a) This problem can be solved by determining the root of
$f(x)=10-20\left(e^{-0.15 x}-e^{-0.5 x}\right)-5=0$
A plot of the function indicates a root at about $x=1 \mathrm{~km}$.

Bisection can be used to determine the root. Here are the first few iterations:

\boldsymbol{i}	$\boldsymbol{x}_{\boldsymbol{I}}$	$\boldsymbol{x}_{\boldsymbol{u}}$	\boldsymbol{x}_{r}	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{r}}\right)$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{\prime}}\right) \times \boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{r}}\right)$	$\boldsymbol{\varepsilon}_{\mathrm{a}}$	
1	0	5	2.5		5	-3.01569	-15.0784	

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

2	0	2.5	1.25	5	-0.87535	-4.37677	100.00%
3	0	1.25	0.625	5	1.422105	7.110527	100.00%
4	0.625	1.25	0.9375	1.422105	0.139379	0.198212	33.33%
5	0.9375	1.25	1.09375	0.139379	-0.39867	-0.05557	14.29%

After 10 iterations, the root is determined as $x=0.971679688$ with an approximate error of 0.5\%.
(b) The location of the minimum can be determined by differentiating the original function to yield

$$
f^{\prime}(x)=-0.15 e^{-0.15 x}+0.5 e^{-0.5 x}=0
$$

The root of this function can be determined as $x=3.44 \mathrm{~km}$. The value of the minimum concentration can then be computed as

$$
c=10-20\left(e^{-0.15(3.44)}-e^{-0.5(3.44)}\right)=1.6433
$$

8.20 (a) This problem can be solved by determining the root of

$$
f(t)=75 e^{-1.5 t}+20 e^{-0.075 t}-15=0
$$

A plot of the function indicates a root at about $t=4$.

The Newton-Raphson method can be formulated as

$$
t_{i+1}=t_{i}-\frac{75 e^{-1.5 t_{i}}+20 e^{-0.075 s_{i}}-15}{-112.5 e^{-1.5 t_{i}}-1.5 e^{-0.075 t_{i}}}
$$

Using the initial guess of $t=6$, an accurate root determination can be obtained in a few iterations:

\boldsymbol{i}	$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$	$\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$	$\boldsymbol{\varepsilon}_{\boldsymbol{a}}$
0	6	-2.23818	-0.97033	
1	3.693371	0.455519	-1.57879	62.45%
2	3.981896	0.02752	-1.39927	7.25%
3	4.001563	$9.84 \mathrm{E}-05$	-1.3893	0.49%

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

The result can be checked by substituting it back into the original equation to yield a prediction close to 15 :

$$
c=75 e^{-1.5(4.001563}+20 e^{-0.075(4.001563}=15.0001
$$

8.21 The solution can be formulated as

$$
0.5=\sin \left(\frac{2 \pi x}{16}\right) \cos \left(\frac{2 \pi(12) 48}{16}\right)+e^{-x}
$$

or

$$
f(x)=\sin \left(\frac{\pi}{8} x\right)+e^{-x}-0.5
$$

A plot of this function suggests a root at about 6.7:

A numerical method can be used to determine that the root is 6.6704 .
8.22 The solution can be formulated as
$f(i)=25,000 \frac{i(1+i)^{6}}{(1+i)^{6}-1}-5,500$
A plot of this function suggests a root at about 0.086 :

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

A numerical method can be used to determine that the root is 0.085595 .
8.23 (a) The solution can be formulated as

$$
f(t)=1.2\left(75,000 e^{-0.045 t}+100,000\right)-\frac{300,000}{1+29 e^{-0.08 t}}
$$

A plot of this function suggests a root at about 40:

(b) The false-position method can be implemented with the results summarized as

\boldsymbol{i}	$\boldsymbol{t}_{\boldsymbol{l}}$	$\boldsymbol{t}_{\boldsymbol{u}}$	$\boldsymbol{f}\left(\boldsymbol{t}_{\boldsymbol{i}}\right)$	$\boldsymbol{f}\left(\boldsymbol{t}_{\boldsymbol{u}}\right)$	$\boldsymbol{t}_{\boldsymbol{r}}$	$\boldsymbol{f}\left(\boldsymbol{t}_{\boldsymbol{r}}\right)$	$\boldsymbol{f}\left(\boldsymbol{t}_{\boldsymbol{t}}\right) \times \boldsymbol{f}\left(\boldsymbol{t}_{\boldsymbol{r}}\right)$	$\boldsymbol{\varepsilon}_{\boldsymbol{a}}$
1	0	100.0000	200000	-176110	53.1760	-84245	$-1.685 \mathrm{E}+10$	
2	0	53.1760	200000	-84245	37.4156	14442.8	$2.889 \mathrm{E}+09$	42.123%
3	37.4156	53.1760	14443	-84245	39.7221	-763.628	$-1.103 \mathrm{E}+07$	5.807%
4	37.4156	39.7221	14443	-763.628	39.6063	3.545288	$5.120 \mathrm{E}+04$	0.292%
5	39.6063	39.7221	4	-763.628	39.6068	0.000486	$1.724 \mathrm{E}-03$	0.001%

(c) The modified secant method (with $\delta=0.01$) can be implemented with the results summarized as

\boldsymbol{i}	$\boldsymbol{t}_{\boldsymbol{i}}$	$\boldsymbol{f}\left(\boldsymbol{t}_{\boldsymbol{i}}\right)$	$\boldsymbol{\delta} \boldsymbol{t}_{\boldsymbol{i}}$	$\boldsymbol{t}_{\boldsymbol{i}}+\boldsymbol{\delta} \boldsymbol{t}_{\boldsymbol{i}}$	$\boldsymbol{f}\left(\boldsymbol{t}_{\boldsymbol{i}}+\boldsymbol{\delta} \boldsymbol{t}_{\boldsymbol{i}}\right)$	$\boldsymbol{f}\left(\boldsymbol{t}_{\boldsymbol{i}}\right)$	$\boldsymbol{\varepsilon}_{\mathrm{a}}$
0	50	-66444.8	0.50000	50.5	-69357.6	-5825.72	
1	38.5946	6692.132	0.38595	38.98053	4143.604	-6603.33	29.552%
2	39.6080	-8.14342	0.39608	40.00411	-2632.32	-6625.36	2.559%
3	39.6068	-0.00345	0.39607	40.00287	-2624.09	-6625.35	0.003%

For both parts (b) and (c), the root is determined to be $t=39.6068$. At this time, the ratio of the suburban to the urban population is $135,142.5 / 112,618.7=1.2$.
8.24 First, we can generate a plot of the function:

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Thus, a zero value occurs at approximately $x=2.8$.
A numerical solution can be developed in a number of ways. Using MATLAB, we would first formulate an M-file for the shear function as:

```
function f = V(x)
f=20* (sing(x,0,1)-sing(x,5,1))-15* sing(x, 8,0)-57;
```

In addition, the singularity function can be set up as

```
function s = sing(x, a, n)
if x > a
    s = (x - a) ^ n;
else
    s = 0;
end
```

We can then either design our own M-file or use MATLAB's built-in capabilities like the fzero function. A session using the fzero function would yield a root of 2.85 as shown here,

```
>> x=fzero(@V,5)
x =
    2.8500
```

8.25 First, we can generate a plot of the moment function:

Thus, a zero value occurs at approximately $x=5.8$.

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

A numerical solution can be developed in a number of ways. Using MATLAB, we would first formulate an M-file for the moment function as:

```
function f = Mx(x)
f=-10*(sing(x,0,2)-sing(x,5,2))+15*sing(x, 8,1)+150*sing(x,7,0)+57*x;
```

In addition, the singularity function can be set up as

```
function s = sing(x, a, n)
if x > a
    s = (x - a) ^ n;
else
    s = 0;
end
```

We can then either design our own M-file implementing one of the numerical methods in the book or use MATLAB's built-in capabilities like the fzero function. A session using the fzero function would yield a root of 5.814 as shown here,

```
>> x=fzero(@Mx,5)
x =
    5.8140
```

8.26 First, we can generate a plot of the slope function:

Thus, a zero value occurs at approximately $x=3.9$.
A numerical solution can be developed in a number of ways. Using MATLAB, we would first formulate an M-file for the slope function as:

```
function f = duydx(x)
f=-10/3* (sing(x,0,3)-sing(x,5,3))+7.5*sing (x,8,2)+150*sing (x,7,1)+57/2*x^2-238.25;
```

In addition, the singularity function can be set up as

```
function s = sing(x, a, n)
if x > a
    s = (x - a) ^ n;
else
    s = 0;
end
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

We can then either design our own M-file implementing one of the numerical methods in the book or use MATLAB’s built-in capabilities like the fzero function. A session using the fzero function would yield a root of 3.9357 as shown here,

```
>> x=fzero(@duydx,5)
x =
    3.9357
```

8.27 (a) First, we can generate a plot of the slope function:

Therefore, other than the end supports, there are no points of zero displacement.
(b) The location of the minimum can be determined by locating the zero of the slope function as described in Prob. 8.26.
8.28 (a) The solution can be formulated as
$f(C)=e^{-28(0.05) /(2(7.5))} \cos \left[\sqrt{\frac{1}{7.5 C}-\left(\frac{280}{2(7.5)}\right)^{2}}(0.05)\right]-0.01$
or
$f(C)=0.39324 \cos \left[\sqrt{\frac{1}{7.5 C}-348.4444}(0.05)\right]-0.01$
A plot of this function indicates a root at about $C=1 \times 10^{-4}$.

(b) Bisection:

\boldsymbol{i}	$\boldsymbol{C}_{\boldsymbol{l}}$	$\boldsymbol{C}_{\boldsymbol{u}}$	$\boldsymbol{C}_{\boldsymbol{r}}$	$\boldsymbol{f}\left(\boldsymbol{C}_{\boldsymbol{l}}\right)$	$\boldsymbol{f}\left(\boldsymbol{C}_{\boldsymbol{r}}\right)$	$\boldsymbol{f}\left(\boldsymbol{\boldsymbol { C } _ { \boldsymbol { l } }) \times \boldsymbol { f } (\boldsymbol { C } _ { \boldsymbol { r } })}\right.$	$\boldsymbol{\varepsilon}_{\boldsymbol{a}}$
1	$5.0000 \mathrm{E}-05$	$1.5000 \mathrm{E}-04$	$1.0000 \mathrm{E}-04$	$-3.02 \mathrm{E}-01$	$-9.35 \mathrm{E}-03$	0.002823	
2	$1.0000 \mathrm{E}-04$	$1.5000 \mathrm{E}-04$	$1.2500 \mathrm{E}-04$	$-9.35 \mathrm{E}-03$	$8.00 \mathrm{E}-02$	-0.00075	20.00%
3	$1.0000 \mathrm{E}-04$	$1.2500 \mathrm{E}-04$	$1.1250 \mathrm{E}-04$	$-9.35 \mathrm{E}-03$	$3.88 \mathrm{E}-02$	-0.00036	11.11%
4	$1.0000 \mathrm{E}-04$	$1.1250 \mathrm{E}-04$	$1.0625 \mathrm{E}-04$	$-9.35 \mathrm{E}-03$	$1.57 \mathrm{E}-02$	-0.00015	5.88%
5	$1.0000 \mathrm{E}-04$	$1.0625 \mathrm{E}-04$	$1.0313 \mathrm{E}-04$	$-9.35 \mathrm{E}-03$	$3.44 \mathrm{E}-03$	$-3.2 \mathrm{E}-05$	3.03%

After 14 iterations, the root is determined as 0.000102277 with an approximate error of 0.006\%.
(c) In order to use MATLAB, we can first set up a function to hold the equation to be solved,

```
function f = prob0828(C)
t = 0.05; R = 280; L = 7.5; goal = 0.01;
f=exp (-R*t/(2*L))* cos(sqrt(1/(L*C) - (R/(2*L))^2)*t) -goal;
```

Here is the session that then determines the root,

```
>> format long
>> fzero(@prob0828,1e-4)
ans =
    1.022726852565315e-004
```

8.29 The solution can be formulated as
$f(t)=9 e^{-t} \cos (2 \pi t)-3$
A plot of this function indicates roots at about $t=0.18,0.9$ and 1.05.

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Using the Excel Solver and initial guesses of $0,0.7$ and 1 yields roots of $t=0.184363099$, 0.903861928 , and 1.049482051 , respectively.
8.30 The solution can be formulated as
$f(N)=0=\frac{2}{q\left(N+\sqrt{N^{2}+4 n_{i}^{2}}\right) \mu}-\rho$
where
$\mu=1350\left(\frac{1000}{300}\right)^{-2.42}=73.2769$
Substituting this value along with the other parameters gives
$f(N)=0=\frac{2}{1.24571 \times 10^{-17}\left(N+\sqrt{N^{2}+1.54256 \times 10^{20}}\right)}-6.5 \times 10^{6}$
A plot of this function indicates a root at about $N=9 \times 10^{9}$.

(b) The bisection method can be implemented with the results for the first 5 iterations summarized as

\boldsymbol{i}	\boldsymbol{N}_{l}	\boldsymbol{N}_{u}	\boldsymbol{N}_{r}	$\boldsymbol{f}\left(\boldsymbol{N}_{\boldsymbol{l}}\right)$	$\boldsymbol{f}\left(\boldsymbol{N}_{r}\right)$	$\boldsymbol{f}\left(\boldsymbol{N}_{\boldsymbol{l}}\right) \times \boldsymbol{f}\left(\boldsymbol{N}_{r}\right)$	$\boldsymbol{\varepsilon}_{\mathrm{a}}$
1	$5.000 \mathrm{E}+09$	$1.500 \mathrm{E}+10$	$1.000 \mathrm{E}+10$	$2.23 \mathrm{E}+06$	$-3.12 \mathrm{E}+05$	$-7 \mathrm{E}+11$	

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

2	$5.000 \mathrm{E}+09$	$1.000 \mathrm{E}+10$	$7.500 \mathrm{E}+09$	$2.23 \mathrm{E}+06$	$7.95 \mathrm{E}+05$	$1.77 \mathrm{E}+12$	33.333%
3	$7.500 \mathrm{E}+09$	$1.000 \mathrm{E}+10$	$8.750 \mathrm{E}+09$	$7.95 \mathrm{E}+05$	$2.06 \mathrm{E}+05$	$1.63 \mathrm{E}+11$	14.286%
4	$8.750 \mathrm{E}+09$	$1.000 \mathrm{E}+10$	$9.375 \mathrm{E}+09$	$2.06 \mathrm{E}+05$	$-6.15 \mathrm{E}+04$	$-1.3 \mathrm{E}+10$	6.667%
5	$8.750 \mathrm{E}+09$	$9.375 \mathrm{E}+09$	$9.063 \mathrm{E}+09$	$2.06 \mathrm{E}+05$	$6.99 \mathrm{E}+04$	$1.44 \mathrm{E}+10$	3.448%

After 15 iterations, the root is 9.228×10^{9} with a relative error of 0.003%.
(c) The modified secant method (with $\delta=0.01$) can be implemented with the results summarized as

\boldsymbol{i}	$\boldsymbol{N}_{\boldsymbol{i}}$	$\boldsymbol{f}\left(\boldsymbol{N}_{\boldsymbol{i}}\right)$	$\boldsymbol{\delta} \boldsymbol{N}_{\boldsymbol{i}}$	$\boldsymbol{N}_{\boldsymbol{i}}+\boldsymbol{\delta} \boldsymbol{N}_{\boldsymbol{i}}$	$\boldsymbol{f}\left(\boldsymbol{N}_{\boldsymbol{i}}+\boldsymbol{\delta} \boldsymbol{N}_{\boldsymbol{i}}\right)$	$\boldsymbol{f}\left(\boldsymbol{N}_{\boldsymbol{i}}\right)$	$\boldsymbol{\varepsilon}_{\boldsymbol{a}}$
0	$9.000 \mathrm{E}+09$	$9.672 \mathrm{E}+04$	$9.000 \mathrm{E}+07$	$9.09 \mathrm{E}+09$	$5.819 \mathrm{E}+04$	-0.0004	
1	$9.226 \mathrm{E}+09$	$6.749 \mathrm{E}+02$	$9.226 \mathrm{E}+07$	$9.32 \mathrm{E}+09$	$-3.791 \mathrm{E}+04$	-0.0004	2.449%
2	$9.228 \mathrm{E}+09$	$-3.160 \mathrm{E}+00$	$9.228 \mathrm{E}+07$	$9.32 \mathrm{E}+09$	$-3.858 \mathrm{E}+04$	-0.0004	0.017%
3	$9.228 \mathrm{E}+09$	$1.506 \mathrm{E}-02$	$9.228 \mathrm{E}+07$	$9.32 \mathrm{E}+09$	$-3.858 \mathrm{E}+04$	-0.0004	0.000%

8.31 Using the given values, the roots problem to be solved is

$$
f(x)=0=1.25-3.59672 \frac{x}{\left(x^{2}+0.81\right)^{3 / 2}}
$$

A plot indicates roots at about 0.3 and 1.23 .

A numerical method can be used to determine that the roots are 0.295372 and 1.229573 .
8.32 The solution can be formulated as

$$
f(\omega)=0=0.01333333-\sqrt{1.97531 \times 10^{-5}+\left(6 \times 10^{-7} \omega-\frac{2}{\omega}\right)^{2}}
$$

A plot of this function indicates a root at about $\omega=150$.

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Note that the shape of the curve suggests that it may be ill-suited for solution with the falseposition method (refer to Fig. 5.14). This conclusion is borne out by the following results for bisection and false position.
(b) The bisection method can be implemented with the results for the first 5 iterations summarized as

\boldsymbol{i}	ω_{l}	ω_{u}	$\boldsymbol{\omega}_{r}$	$\boldsymbol{f}\left(\omega_{\boldsymbol{l}}\right)$	$\boldsymbol{f}\left(\omega_{r}\right)$	$\boldsymbol{f}\left(\omega_{\boldsymbol{l}}\right) \times \boldsymbol{f}\left(\omega_{r}\right)$	$\boldsymbol{\varepsilon}_{\mathrm{a}}$
1	1	1000	500.5	-1.98667	0.007553	-0.01501	
2		1	500.5	250.75	-1.98667	0.004334	-0.00861
3	1	250.75	125.875	-1.98667	-0.00309	0.006144	99.206%
4	125.875	250.75	188.3125	-0.00309	0.001924	$-6 \mathrm{E}-06$	33.156%
5	125.875	188.3125	157.0938	-0.00309	$-6.2 \mathrm{E}-05$	$1.93 \mathrm{E}-07$	19.873%

After 13 iterations, the root is 157.9474 with an approximate relative error of 0.077%.
(c) The false-position method can be implemented with the results for the first 5 iterations summarized as

\boldsymbol{i}	ω_{l}	ω_{u}	$\boldsymbol{f}\left(\omega_{\boldsymbol{l}}\right)$	$\boldsymbol{f}\left(\omega_{u}\right)$	ω_{r}	$\boldsymbol{f}\left(\omega_{r}\right)$	$\boldsymbol{f}\left(\omega_{\boldsymbol{l}}\right) \times \boldsymbol{f}\left(\omega_{r}\right)$	$\boldsymbol{\varepsilon}_{\mathrm{a}}$
1	1	1000.0	-1.98667	0.008674	995.7	0.00867	-0.01722	
2	1	995.7	-1.98667	0.00867	991.3	0.008667	-0.01722	0.436%
3	1	991.3	-1.98667	0.008667	987.0	0.008663	-0.01721	0.436%
4	1	987.0	-1.98667	0.008663	982.8	0.00866	-0.01720	0.436%
5	1	982.8	-1.98667	0.00866	978.5	0.008656	-0.01720	0.435%

After 578 iterations, the root is 189.4316 with an approximate error of 0.0998%. Note that the true error is actually about 20%. Therefore, the false position method is a very poor choice for this problem.
8.33 The solution can be formulated as
$f(f)=4 \log _{10}(\operatorname{Re} \sqrt{f})-0.4-\frac{1}{\sqrt{f}}$
We want our program to work for Reynolds numbers between 2,500 and 1,000,000.
Therefore, we must determine the friction factors corresponding to these limits. This can be done with any root location method to yield 0.011525 and 0.002913 . Therefore, we can set

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
our initial guesses as $x_{l}=0.0028$ and $x_{u}=0.012$. Equation (5.5) can be used to determine the number of bisection iterations required to attain an absolute error less than 0.000005 ,
$n=\log _{2}\left(\frac{\Delta x^{0}}{E_{a, d}}\right)=\log _{2}\left(\frac{0.012-0.0028}{0.000005}\right)=10.8454$
which can be rounded up to 11 iterations. Here is a VBA function that is set up to implement 11 iterations of bisection to solve the problem. Note that because VBA does not have a builtin function for the common logarithm, we have developed a user-defined function for this purpose.

```
Function Bisect(xl, xu, Re)
Dim xrold As Double, test As Double
Dim xr As Double, iter As Integer, ea As Double
Dim i As Integer
iter = 0
For i = 1 To 11
    xrold = xr
    xr = (xl + xu) / 2
    iter = iter + 1
    If xr <> 0 Then
        ea = Abs((xr - xrold) / xr) * 100
    End If
    test = f(xl, Re) * f(xr, Re)
    If test < 0 Then
        xu = xr
    ElseIf test > 0 Then
            xl = xr
    Else
            ea = 0
    End If
Next i
Bisect = xr
End Function
Function f(x, Re)
f = 4 * log10(Re * Sqr(x)) - 0.4 - 1 / Sqr(x)
End Function
Function log10(x)
log10 = Log(x) / Log(10)
End Function
```

This can be implemented in Excel. Here are the results for a number of values within the desired range. We have included the true value and the resulting error to verify that the results are within the desired error criterion of $E_{a}<5 \times 10^{-6}$.

Re	Root	Truth	$\boldsymbol{E}_{\boldsymbol{t}}$
2500	0.011528320	0.011524764	$3.56 \mathrm{E}-06$
3000	0.010890430	0.010890229	$2.01 \mathrm{E}-07$
10000	0.007727930	0.007727127	$8.02 \mathrm{E}-07$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

30000	0.005877148	0.005875048	$2.10 \mathrm{E}-06$
100000	0.004502539	0.004500376	$2.16 \mathrm{E}-06$
300000	0.003622070	0.003617895	$4.18 \mathrm{E}-06$
1000000	0.002912305	0.002912819	$5.14 \mathrm{E}-07$

8.34 The solution can be formulated as

$$
f(d)=0=\frac{2 k_{2} d^{5 / 2}}{5}+\frac{1}{2} k_{1} d^{2}-m g d-m g h
$$

Substituting the parameter values gives
$f(d)=0=16 d^{5 / 2}+25,000 d^{2}-882.9 d-397.305$
A plot of this function indicates a root at about $d=0.145$.

A numerical method can be used to determine that the root is $d=1.44933$.
8.35 The solution can be formulated as

$$
f(T)=0=-0.10597+1.671 \times 10^{-4} T+9.7215 \times 10^{-8} T^{2}-9.5838 \times 10^{-11} T^{3}+1.9520 \times 10^{-14} T^{4}
$$

MATLAB can be used to determine all the roots of this polynomial,

```
>> format long
>> x=[1.952e-14 -9.5838e-11 9.7215e-8 1.671e-4 -0.10597];
>> roots(x)
ans =
    1.0e+003 *
    2.74833708474921 + 1.12628559147229i
    2.74833708474921 - 1.12628559147229i
    -1.13102810059654
    0.54408753765551
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

The only realistic value is 544.0875 . This value can be checked using the polyval function,

```
>> polyval(x,544.08753765551)
ans =
    3.191891195797325e-016
```

8.36 The solution can be formulated as

$$
f\left(\theta_{0}\right)=\left(\tan \theta_{0}\right) x-\frac{g}{2 v_{0}^{2} \cos ^{2} \theta_{0}} x^{2}+y_{0}-y
$$

Substituting the parameter values gives

$$
f\left(\theta_{0}\right)=0=35 \tan \left(\pi \theta_{0} / 180\right)-\frac{15.0215625}{\cos ^{2}\left(\pi \theta_{0} / 180\right)}+1
$$

where θ_{0} is expressed in degrees. A plot of this function indicates roots at about $\theta_{0}=27^{\circ}$ and 61°.

The Excel solver can then be used to determine the roots to higher accuracy. Using an initial guesses of 27° and 61° yields $\theta_{0}=27.2036^{\circ}$ and 61.1598°, respectively. Therefore, two angles result in the desired outcome. Note that the lower angle would probably be preferred as the ball would arrive at the catcher faster.
8.37 The solution can be formulated as

$$
f(t)=u \ln \frac{m_{0}}{m_{0}-q t}-g t-v
$$

Substituting the parameter values gives
$f(t)=2,000 \ln \frac{150,000}{150,000-2,700 t}-9.81 t-750$
A plot of this function indicates a root at about $t=21$.

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Because two initial guesses are given, a bracketing method like bisection can be used to determine the root,

\boldsymbol{i}	$\boldsymbol{t}_{\boldsymbol{l}}$	$\boldsymbol{t}_{\boldsymbol{u}}$	$\boldsymbol{t}_{\boldsymbol{r}}$	$\boldsymbol{f}\left(\boldsymbol{t}_{\boldsymbol{\prime}}\right)$	$\boldsymbol{f}\left(\boldsymbol{t}_{\boldsymbol{r}}\right)$	$\boldsymbol{f}\left({\boldsymbol{t} \boldsymbol{)} \boldsymbol{)} \times \boldsymbol{f}\left(\boldsymbol{t}_{\boldsymbol{r}}\right)}^{c} \boldsymbol{\varepsilon}_{\boldsymbol{a}}\right.$	
1	10	50	30	-451.198	508.7576	-229550	
2	10	30	20	-451.198	-53.6258	24195.86	50.00%
3	20	30	25	-53.6258	200.424	-10747.9	20.00%
4	20	25	22.5	-53.6258	67.66275	-3628.47	11.11%
5	20	22.5	21.25	-53.6258	5.689921	-305.127	5.88%
6	20	21.25	20.625	-53.6258	-24.2881	1302.471	3.03%
7	20.625	21.25	20.9375	-24.2881	-9.3806	227.8372	1.49%
8	20.9375	21.25	21.09375	-9.3806	-1.8659	17.50322	0.74%

Thus, after 8 iterations, the approximate error falls below 1% with a result of $t=21.09375$. Note that if the computation is continued, the root can be determined as 21.13242.
8.38 The solution can be formulated as

$$
f(\omega)=\tan (\omega / 3-1)-\frac{0.007158 \omega}{1-(\omega / 34.119887)^{2}}
$$

A plot of this function indicates a root at about $\omega=3.1$.

A numerical method can be used to determine that the root is $\omega=3.06637$.
8.39 Excel Solver solution:

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

	A	B	C	D	E	F	G
1	Prob. 8.39						
2							
3	In:						
4	TA	400					
5	CpA	9.909	<-----------	$=3.381+0.01804 *$ TA-0.0000043*TA^2			
6	FlowA	2					
7							
8	TB	700					
9	CpB	78.9098	<-----------	$=8.592+0.0129 *$ TB-0.00004078*TB^2			
10	FlowB	1					
11							
12	Heatin	63164.06	<-----------	$=$ FlowA*CpA*TA + FlowB*CpB*TB			
13							
14	T	631.9315					
15	CpAout	13.06389	<-----------	$=3.381+0.01804 * T-0.0000043 *{ }^{\wedge} 2$			
16	CpBout	73.82618	<-----------	$=8.592+0.0129 *$ T $-0.00004078 *{ }^{*} \wedge 2$			
17							
18	Heatout:	63164.06	<-----------	=FlowA*CpAout*T+FlowB*CpBout*T			
19							
20	Net	1.27E-07	<-----------	=Heatin-Heatout			

8.40 The problem reduces to finding the value of n that drives the second part of the equation to 1. In other words, finding the root of
$f(n)=\frac{n}{n-1}\left(R_{c}^{(n-1) / n}-1\right)-1=0$
Inspection of the equation indicates that singularities occur at $x=0$ and 1. A plot indicates that otherwise, the function is smooth.

A tool such as the Excel Solver can be used to locate the root at $n=0.8518$.

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
8.41 The following application of Excel Solver can be set up:

The solution is:

	A	B	C	D	E	F		G	H		1
1	Prob0841										
2											
3	T0	450									
4	T3	25									
5			Solver Results								
6	T1	137.0987									X
7	T2	75.85862	Solver has converged to the current solution. All constraints are satisfied.						Reports		
8											
9	q1	244.9608	© Keep Solver SolutionRestore Original Values						Answer Sensitivity Limits		A
10	q2	244.9605									
11	q3	244.9605									
12											
13						Save Scenario...				Help	
14	$(q 1-q 2)^{\wedge} 2$	8.35E-08									
15	$(q 1-q 3)^{\wedge} 2$	6.42E-08									
16	$(\mathrm{q} 2-\mathrm{q} 3)^{\wedge} 2$	1.27E-09									
17											
18	Sum	1.49E-07									

8.42 This problem was solved using the roots command in MATLAB.

```
C =
    1 llll
roots(c)
ans =
    48.3543
    -12.2041
    -3.1502
```

Therefore,

$$
\sigma_{1}=48.4 \mathrm{Mpa} \quad \sigma_{2}=-3.15 \mathrm{MPa} \quad \sigma_{3}=-12.20 \mathrm{MPa}
$$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
8.43 For this problem, two continuity conditions must hold. First, the flows must balance,
$Q_{1}=Q_{2}+Q_{3}$
Second, the energy balance must hold. That is, the head losses in pipes 1 and 3 must balance the elevation drop between reservoirs A and C ,

$$
\begin{equation*}
H_{L, 1}+H_{L, 3}=E_{A}-E_{C} \tag{2}
\end{equation*}
$$

The head losses for each pipe can be computed with

$$
\begin{equation*}
H_{L, i}=f_{i} \frac{L_{i}}{D_{i}} \frac{V_{i}^{2}}{2 g} \tag{3}
\end{equation*}
$$

The flows and velocities are related by the continuity equation, which for a circular pipe is

$$
\begin{equation*}
V_{i}=\frac{4 Q_{i}}{\pi D_{i}^{2}} \tag{4}
\end{equation*}
$$

Finally, the Colebrook equation relates the friction factor to the pipe characteristics as in

$$
\frac{1}{\sqrt{f_{i}}}=-2.0 \log \left(\frac{\varepsilon_{i}}{3.7 D_{i}}+\frac{2.51}{\operatorname{Re}_{i} \sqrt{f_{i}}}\right)
$$

where $\varepsilon=$ the roughness (m), and $\mathrm{Re}=$ the Reynolds number,
$\operatorname{Re}_{i}=\frac{V_{i} D_{i}}{v_{i}}$
where $v=$ kinematic viscosity $\left(\mathrm{m}^{2} / \mathrm{s}\right)$.
These equations can be combined to reduce the problem to two equations with 2 unknowns. First, Eq. 4 can be solved for Q and substituted into Eq. 1 to give
$\frac{\pi D_{1}^{2}}{4} V_{1}-Q_{2}-\frac{\pi D_{3}^{2}}{4} V_{3}=0$
Then, Eq. 3 can be substituted into Eq. 2 to yield
$f_{1} \frac{L_{1}}{2 g D_{1}} V_{1}^{2}+f_{3} \frac{L_{3}}{2 g D_{3}} V_{3}^{2}-\left(E_{A}-E_{C}\right)=0$
Therefore, if we knew the friction factors, these are two equations with two unknowns, V_{1} and V_{3}. If we could solve for these velocities, we could then determine the flows in pipes 1

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
and 3 via Eq. 4. Further, we could then determine the head losses in each pipe and compute the elevation of reservoir B as
$E_{B}=E_{A}-H_{L, 1}-H_{L, 2}$
There are a variety of ways to obtain the solution. One nice way is to use the Excel Solver. First the calculation can be set up as

	A	B	C	D	E	F
1						
2	e	0.0012				
3	g	9.81				
4	nu	1.00E-06				
5						
6	Resenoir					
7	ElevA	200	ElevB	181.147169	ElevC	172.5
8						
9	Parameter					
10	L1	1800	L2	500	L3	1400
11	D1	0.4	D2	0.25	D3	0.2
12	V1		V2	2.03718327	V3	1
13						
14	Q1	0.125663706	Q2	0.1	Q3	0.03141593
15						
16	f1	0.026509711	f2	0.03019179	f3	0.03253974
17						
18	Re 1	400000	Re 2	509295.818	Re3	200000
19						
20	hL1	6.080208857	hL2	12.7726225	hL3	11.609491
21						
22		Res	Res"2			
23	Flow	-0.00575222	3.31E-05			
24	Head	-9.81030018	96.24199			
25						
26		Target Cell	96.24202			

The shaded cells are input data and the bold cells are the unknowns. The remaining cells are computed with formulas as outlined below. Note that we have named the cells so that the formulas are easier to understand.

	A	B	C	D	E	F
1						
2	e	0.0012				
3	g	9.81				
4	nu	0.000001				
5						
6	Resenoir					
7	ElevA	200	ElevB	=ElevA-hL1_-hL2	ElevC	172.5
8						
9	Parameters:					
10	L1	1800	L2	500	L3	1400
11	D1	0.4	D2	0.25	D3	0.2
12	V1	1.12317013769616	V2	=4*Q2_P10/D2_n2	V3	1.30927138993214
13						
14	Q1	$=\mathrm{Pl} 0^{*} \mathrm{D} 1 \mathrm{n}^{\wedge} 2 / 4^{*} \mathrm{~V} 1$ _	Q2	0.1	Q3	$=P 10 * 3^{*}{ }^{2 / 4 *}{ }^{*}$
15						
16	f1	=ff(e, D1 _, B18)	12	=ff(e, D2_, D18)	f3	=ff(e,D3_,F18)
17						
18	Re 1	=D1_V/1_/nu	Re 2	$=\mathrm{D} 2 \ldots \mathrm{~V} / 2$ / nu	Re3	= D3_*V3_hu
19						
20	hL1	=f1_L1_/D1_*V1_n2/(2*g)	hL2	=f2_*2_/D2_*V2_2/(2*g)	hL3	=f3_*L3_/D3_* $3^{\text {² }} 2 /\left(2^{*} \mathrm{~g}\right)$
21						
22		Res	Res 22			
23	Flow	=Q1-Q2_-Q3	= 823×2			
24	Head	=hL1_+hL3_-(ElevA-ElevC)	= $\mathrm{B} 24{ }^{\circ} 2$			
25						
26		Target Cell	=SUM(C23:C24)			

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Notice that we have set up the flow and head loss balances (Eqs. 5 and 6) in cells b23 and b24. We form a target cell (c26) as the summation of the squares of the balances (c23 and c24). It is this target cell that must be minimized to solve the problem.

An important feature of the solution is that we use a VBA worksheet function, ff, to solve for the friction factors in cells b16, d16 and f16. This function uses the modified secant method to solve the Colebrook equation for the friction factor. As shown below, it uses the Blasius formula to obtain a good initial guess:

```
Option Explicit
Function ff(e, D, Re)
Dim imax As Integer, iter As Integer
Dim es As Double, ea As Double
Dim xr As Double, xrold As Double, fr As Double
Const del As Double = 0.01
es = 0.01
imax = 20
'Blasius equation
xr = 0.316 / Re ^ 0.25
iter = 0
Do
    xrold = xr
    fr = f(xr, e, D, Re)
    xr = xr - fr * del * xr / (f(xr + del * xr, e, D, Re) - fr)
    iter = iter + 1
    If (xr <> 0) Then
        ea = Abs((xr - xrold) / xr) * 100
    End If
    If ea < es Or iter >= imax Then Exit Do
Loop
ff = xr
End Function
Function f(x, e, D, Re)
'Colebrook equation
f = -2 * Log(e / (3.7 * D) + 2.51 / Re / Sqr(x)) / Log(10) - 1 / Sqr(x)
End Function
```

The Excel Solver can then be used to drive the target cell to a minimum by varying the cells for V_{1} (cell b12) and V_{3} (cell f12).

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

The results of Solver are shown below:

	A	B	C	D	E	F
1						
2	e	0.0012				
3	g	9.81				
4	nu	1.00E-06				
5						
6	Reservoir					
7	ElevA	200	ElevB	179.564187	ElevC	172.5
8						
9	Parameter					
10	L1	1800	L2	500	L3	1400
11	D1	0.4	D2	0.25	D3	0.2
12	V1	1.123442064	V2	2.03718327	V3	1.30915804
13						
14	Q1	0.141175893	Q2	0.1	Q3	0.04112841
15						
16	f1	0.026472486	f2	0.03019179	5	0.03244092
17						
18	Re 1	449376.8256	Re 2	509295.818	Re3	261831.608
19						
20	hL1	7.66319003	hL2	12.7726225	hL3	19.8370151
21						
22		Res	Res ${ }^{2}$			
23	Flow	4.74805E-05	2.25E-09			
24	Head	0.000205128	$4.21 \mathrm{E}-08$			
25						
26		Target Cell	4.43E-08			

Therefore, the solution is $V_{1}=1.12344$ and $V_{3}=1.309158$. Equation 4 can then be used to compute $Q_{1}=0.14118$ and $Q_{3}=0.041128$. Finally, Eq. 7 can be used to compute the elevation of reservoir B as 179.564 .
8.44 This problem can be solved in a number of ways. The following solution employs Excel and its Solver option. A worksheet is developed to solve for the pressure drop in each pipe and then determine the flow and pressure balances. Here is how the worksheet is set up,

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

	A	B	C	D	E	F	G	H
1	Flow1	1	$\mathrm{m} 3 / \mathrm{s}$					
2	rho	1.23	$\mathrm{kg} / \mathrm{m} 3$					
3								
4	pipe	Length	Diameter	Area	Flow	Velocity	f	DeltaP
5	2	4	0.5	0.1963	0.5	2.546479	0.005	$1.60 \mathrm{E}-01$
6	3	2	0.5	0.1963	0.5	2.546479	0.005	$7.98 \mathrm{E}-02$
7	4	4	0.5	0.1963	0.5	2.546479	0.005	$1.60 \mathrm{E}-01$
8	5	2	0.5	0.1963	0.5	2.546479	0.005	$7.98 \mathrm{E}-02$
9	6	4	0.5	0.1963	0.5	2.546479	0.005	$1.60 \mathrm{E}-01$
10	7	8	0.5	0.1963	0.5	2.546479	0.005	3.19E-01
11	8	2	0.5	0.1963	0.5	2.546479	0.005	$7.98 \mathrm{E}-02$
12	9	2	0.5	0.1963	0.5	2.546479	0.005	7.98E-02
13								
14		Res	Res^2					
15	Flow1	0.00E+00	0.00E +00					
16	Flow2	-5.00E-01	$2.50 \mathrm{E}-01$					
17	Flow3	-5.00E-01	$2.50 \mathrm{E}-01$					
18	Head1	1.60E-01	$2.54 \mathrm{E}-02$					
19	Head2	1.60E-01	$2.54 \mathrm{E}-02$					
20	Head3	1.60E-01	$2.54 \mathrm{E}-02$					
21								
22		Target	$5.76 \mathrm{E}-01$					

The following shows the data and formulas that are entered into each cell.

	A	B	C	D	E	F	G	H
1	Flow1	1	m3/s					
2	rho	1.23	$\mathrm{kg} / \mathrm{m} 3$					
3								
4	pipe	Length	Diameter	Area	Flow	Velocity	f	DeltaP
5	2	4	0.5	$=\mathrm{Pl} \mathrm{O}^{*}(\mathrm{C} 5 / 2)^{\wedge} 2$	0.5	=ABS (E5/D5)	0.005	=16/P10^2*G5*B5*rho/2/C5*5*E5*2
6	3	2	0.5	$=\mathrm{Pl} 10{ }^{*}(\mathrm{C} 6 / 2)^{2} 2$	0.5	=ABS(E6/D6)	0.005	$=16 / \mathrm{Pl} 0^{2} 2^{*} \mathrm{~Gb}^{*} \mathrm{BE}^{*} \mathrm{rho} / 2 / \mathrm{Cb}^{n} 5^{*} \mathrm{E} \mathrm{E}^{2} 2$
7	4	4	0.5	$=\mathrm{PlO}{ }^{*}(\mathrm{C} 7 / 2)^{2} 2$	0.5	=ABS(E7/D7)	0.005	$=16 / \mathrm{Pl} 0^{\wedge} 2^{*} \mathrm{G} 7^{*} \mathrm{~B} 7 * \mathrm{rho} / 2 / \mathrm{C} 7^{\wedge} 5^{* E 7 * 2}$
8	5	2	0.5	$=\mathrm{Pl} 0{ }^{*}(\mathrm{CB} / 2)^{2} 2$	0.5	=ABS(E8/D8)	0.005	$=16 / \mathrm{Pl} 0^{2} 2^{*} \mathrm{~GB}^{*} \mathrm{BB}^{*}$ rho/2/C8*5*E8*2
9	6	4	0.5	$=\mathrm{Pl} 0^{*}(\mathrm{C} 9 / 2)^{2} 2$	0.5	=ABS(E9/D9)	0.005	$=16 / \mathrm{Pl} 0^{\wedge} 2^{*} \mathrm{G} 9^{*} \mathrm{B9}^{*} \mathrm{rho} / 2 / \mathrm{C9}{ }^{\wedge} 5^{*} \mathrm{E} 9^{\wedge} 2$
10	7	8	0.5	$=\mathrm{Pl} 0^{*}(\mathrm{C} 10 / 2)^{\wedge} 2$	0.5	=ABS(E10/D10)	0.005	$=16 / \mathrm{Pl} 0^{*} 2^{*} \mathrm{G} 10^{*} \mathrm{~B} 10^{*} \mathrm{rho} / 2 / \mathrm{C} 10^{*} 5^{* E} \mathrm{E} 10^{\wedge} 2$
11	8	2	0.5	$=\mathrm{Pl} 0^{*}(\mathrm{C} 11 / 2)^{\wedge} 2$	=E8	=ABS(E11/D11)	0.005	$=16 / \mathrm{P} 10^{\wedge} 2^{*} \mathrm{G} 11^{*} \mathrm{~B} 11^{*} \mathrm{rho} / 2 / \mathrm{C} 11^{\prime} 5^{*} \mathrm{E} 11^{n} 2$
12	9	2	0.5	$=\mathrm{PlO}^{*}(\mathrm{C} 12 / 2)^{\wedge} 2$	=E6	= $\mathrm{ABS}(\mathrm{E} 12 / \mathrm{D} 12)$	0.005	$=16 / \mathrm{P} 10^{\prime 2} \mathrm{Z}^{*} \mathrm{G} 12^{*} \mathrm{~B} 12^{*} \mathrm{rho} / 2 / \mathrm{C} 12^{*} 5^{*} \mathrm{E} 12^{\prime 2}$
13								
14		Res	Res ${ }^{2}$					
15	Flow1	=Flow1-E5-E6	= $\mathrm{B}^{15} 5^{\text {a }}$ 2					
16	Flow2	=E6-E7-E8	= B16 ${ }^{\text {a }}$					
17	Flow3	=E8-E9-E10	=B17^2					
18	Head1	$=\mathrm{H} 6+\mathrm{H} 12+\mathrm{H} 7-\mathrm{H} 5$	= B18 ${ }^{2}$					
19	Head2	$=\mathrm{H} 8+\mathrm{H} 11+\mathrm{H} 9-\mathrm{H} 7$	= B19 ${ }^{2}$					
20	Head3	= $\mathrm{H} 10-\mathrm{H} 9$	$=\mathrm{B} 2 \mathrm{O}^{\circ} 2$					
21								
22		Target	=SUM(C15:C20)					

Notice that we have set up the flow and pressure head loss balances in cells b16 through b21. We form a target cell (c23) as the summation of the squares of the residuals (c16 through c21). It is this target cell that must be minimized to solve the problem. The following shows how this was done with the Solver.

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Here is the final result:

	A	B	C	D	E	F	G	H
1	Flow1	1	m3/s					
2	rho	1.23	$\mathrm{kg} / \mathrm{m} 3$					
3								
4	pipe	Length	Diameter	Area	Flow	Velocity	f	DeltaP
5	2	4	0.5	0.1963	0.5316	2.707495	0.005	1.80E-01
6	3	2	0.5	0.1963	0.4684	2.385504	0.005	$7.00 \mathrm{E}-02$
7	4	4	0.5	0.1963	0.2513	1.279907	0.005	4.03E-02
8	5	2	0.5	0.1963	0.217	1.105374	0.005	1.50E-02
9	6	4	0.5	0.1963	0.1272	0.647611	0.005	1.03E-02
10	7	8	0.5	0.1963	0.0899	0.457797	0.005	1.03E-02
11	8	2	0.5	0.1963	0.217	1.105374	0.005	1.50E-02
12	9	2	0.5	0.1963	0.4684	2.385504	0.005	7.00E-02
13								
14		Res	Res ${ }^{2}$					
15	Flow1	-7.99E-06	6.38E-11					
16	Flow2	4.36E-05	1.90E-09					
17	Flow3	-6.55E-06	$4.29 \mathrm{E}-11$					
18	Head1	-4.28E-05	1.83E-09					
19	Head2	7.60E-05	5.78E-09					
20	Head3	-5.99E-06	3.59E-11					
21								
22		Target	9.66E-09					

8.45 This problem can be solved in a number of ways. The following solution employs Excel and its Solver option. A worksheet is developed to solve for the pressure drop in each pipe and then determine the flow and pressure drop balances. Here is how the worksheet is set up,

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

	A	B	C	D	E	F	G	H	1
1	Flow1	1	m3/s						
2	rho	1.23	$\mathrm{kg} / \mathrm{m} 3$						
3	mu	1.79E-05	N s/m2						
4									
5	pipe	Length	Diameter	Area	Flow	Velocity	Re	f	DeltaP
6	2	4	0.5	0.1963	0.5000	2.5465	87491	0.004629	1.48E-01
7	3	2	0.5	0.1963	0.5000	2.5465	87491	0.004629	7.38E-02
8	4	4	0.5	0.1963	0.5000	2.5465	87491	0.004629	1.48E-01
9	5	2	0.5	0.1963	0.5000	2.5465	87491	0.004629	7.38E-02
10	6	4	0.5	0.1963	0.5000	2.5465	87491	0.004629	1.48E-01
11	7	8	0.5	0.1963	0.5000	2.5465	87491	0.004629	2.95E-01
12	8	2	0.5	0.1963	0.5000	2.5465	87491	0.004629	$7.38 \mathrm{E}-02$
13	9	2	0.5	0.1963	0.5000	2.5465	87491	0.004629	7.38E-02
14									
15		Res	Res $n 2$						
16	Flow1	0.00E+00	0.00E+00						
17	Flow2	-5.00E-01	2.50E-01						
18	Flow3	-5.00E-01	2.50E-01						
19	Head1	1.48E-01	2.18E-02						
20	Head2	1.48E-01	2.18E-02						
21	Head3	1.48E-01	2.18E-02						
22									
23		Target	$5.65 \mathrm{E}-01$						

The following shows the data and formulas that are entered into each cell.

	A	B	C	D	E	F	G	H	1
1	Flow1	1	$\mathrm{m3} / \mathrm{s}$						
2	rho	1.23	$\mathrm{kg} / \mathrm{m} 3$						
3	mu	0.0000179	N s/m2						
4									
5	pipe	Length	Diameter	Area	Flow	Velocity	Re	f	DeltaP
6	2	4	0.5	$=\mathrm{Pl} 0^{*}(\mathrm{C} 6 / 2)^{\wedge} 2$	0.5	=ABS(E6/D6)	$=r h o{ }^{*} 6^{*} \mathrm{C} 6 / \mathrm{mu}$	=ff(G6)	$=16 / \mathrm{Pl})^{\wedge} 2^{*} \mathrm{HE}^{*} \mathrm{B6}^{*}$ rho/2/C6*5*E6^2
7	3	2	0.5	$=\mathrm{Pl} 0^{*}(\mathrm{C} 7 / 2)^{\wedge} 2$	0.5	= ABS(E7/D7)	$=r h o * 7^{*} \mathrm{C} 7 / \mathrm{mu}$	=ff(G7)	$=16 / \mathrm{Pl} 0^{\wedge} 2^{*} \mathrm{H} 7^{*} \mathrm{~B} 7^{*}$ rho/2/C7 ${ }^{\wedge} 5^{*} \mathrm{E} 7^{\wedge} 2$
8	4	4	0.5	$=\mathrm{Pl} 0^{*}(\mathrm{C8} / 2)^{\wedge} 2$	0.5	= ABS (E8/D8)	$=r h o * F 8 * C 8 / m u ~$	=ff(G8)	$=16 / \mathrm{Pl})^{\wedge} 2^{*} \mathrm{H}^{*} \mathrm{BB}^{*} \mathrm{rho} / 2 / \mathrm{CB}^{\wedge} 5^{*} \mathrm{ES}^{\wedge} 2$
9	5	2	0.5	$=\mathrm{Pl} 0^{*}(\mathrm{C9/2})^{\wedge} 2$	0.5	=ABS(E9/D9)	$=r h o * F 9 * \mathrm{C} / \mathrm{mu}$	=ff(G9)	$=16 / \mathrm{Pl})^{\wedge} 2^{*} \mathrm{H}^{*} \mathrm{BS}^{*}$ rho/2/C9^5*E9^2
10	6	4	0.5	$=\mathrm{Pl} 0^{*}(\mathrm{C} 10 / 2)^{2} 2$	0.5	=ABS(E10/D10)	$=r h o{ }^{*} \mathrm{~F} 10 * \mathrm{C} 10 / \mathrm{mL}$	=ff(G10)	$=16 / \mathrm{Pl} 0^{\wedge} 2^{*} \mathrm{H} 10^{*} \mathrm{B10}$ *ho/2/C10^5*E10^2
11	7	8	0.5	$=\mathrm{Pl} 0^{*}(\mathrm{C} 11 / 2)^{2} 2$	0.5	=ABS (E11/D11)	$=r h{ }^{*} \mathrm{~F} 11^{*} \mathrm{C} 11 / \mathrm{mL}$	=ff(G11)	$=16 / \mathrm{Pl})^{\circ} 2^{*} \mathrm{H} 11{ }^{*} \mathrm{~B} 11^{*} \mathrm{rho/2/C11*5*E11} \mathrm{\wedge 2}$
12	8	2	0.5	$=\mathrm{Pl} 0^{*}(\mathrm{C} 12 / 2)^{2} 2$	=E9	=ABS(E12/D12)	$=r h{ }^{*}{ }^{*} 12 * \mathrm{C} 12 / \mathrm{mL}$	=ff(G12)	$=16 / \mathrm{Pl} 0^{\wedge} 2^{*} \mathrm{H} 12{ }^{*} \mathrm{~B} 12 * \mathrm{rho} / 2 / \mathrm{Cl} 12^{\sim} 5^{*} \mathrm{E} 12^{\wedge} 2$
13	9	2	0.5	$=\mathrm{Pl} 0^{*}(\mathrm{C} 13 / 2)^{2} 2$	=E7	=ABS (E13/D13)	$=r h{ }^{*} \mathrm{~F} 13^{*} \mathrm{C} 13 / \mathrm{mL}$	=ff(G13)	$=16 / \mathrm{PI})^{\circ} 2^{*} \mathrm{H} 13{ }^{*} \mathrm{~B} 13^{*} \mathrm{rho/2/C13} 55^{*} \mathrm{E} 13 \times 2$
14									
15		Res	Res ${ }^{2}$						
16	Flow1	=Flow1-E6-E7	=B16²						
17	Flow2	=E7-E8-E9	$=\mathrm{B} 17^{\wedge} 2$						
18	Flow3	=E9-E10-E11	= $\mathrm{B}^{18}{ }^{\wedge} 2$						
19	Head1	$=17+113+18-16$	= $\mathrm{B}^{\text {19 }}$ 2 2						
20	Head2	$=19+112+110-18$	$=\mathrm{B} 20^{\wedge} 2$						
21	Head3	$=111-110$	$=\mathrm{B} 21 \times 2$						
22									
23		Target	$=S U M(C 16: C 21)$						

Notice that we have set up the flow and pressure head loss balances in cells b16 through b21. We form a target cell (c23) as the summation of the squares of the residuals (c16 through c21). It is this target cell that must be minimized to solve the problem.

An important feature of the solution is that we use a VBA worksheet function, ff, to solve for the friction factors in column h. This function uses the modified false position method to solve the von Karman equation for the friction factor.

```
Option Explicit
Function ff(Re)
Dim iter As Integer, imax As Integer
Dim il As Integer, iu As Integer
Dim xrold As Double, fl As Double, fu As Double, fr As Double
Dim xl As Double, xu As Double, es As Double
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

```
Dim xr As Double, ea As Double
xl = 0.00001
xu = 1
es = 0.01
imax = 40
iter = 0
fl = f(xl, Re)
fu=f(xu, Re)
Do
    xrold = xr
    xr = xu - fu * (xl - xu) / (fl - fu)
    fr = f(xr, Re)
    iter = iter + 1
    If xr <> O Then
        ea = Abs((xr - xrold) / xr) * 100
    End If
    If fl * fr < 0 Then
            xu = xr
            fu=f(xu, Re)
            iu = 0
            il = il + 1
            If il >= 2 Then fl = fl / 2
        ElseIf fl * fr > 0 Then
            xl = xr
            fl = f(xl, Re)
            il = 0
            iu = iu + 1
            If iu >= 2 Then fu = fu / 2
        Else
            ea = 0
    End If
    If ea < es Or iter >= imax Then Exit Do
Loop
ff = xr
End Function
Function f(x, Re)
f = 4 * Log(Re * Sqr (x)) / Log(10) - 0.4 - 1 / Sqr(x)
End Function
```

The Excel Solver can then be used to drive the target cell to a minimum by varying the flows in cells e6 through el1.

Here is the final result:

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

	A	B	C	D	E	F	G	H	1
1	Flow1	1	m3/s						
2	tho	1.23	$\mathrm{kg} / \mathrm{m} 3$						
3	mu	1.79E-05	$\mathrm{Ns} / \mathrm{m} 2$						
4									
5	pipe	Length	Diameter	Area	Flow	Velocity	Re	f	DeltaP
6	2	4	0.5	0.1963	0.5411	2.7559	94687	0.004552	1.70E-01
7	3	2	0.5	0.1963	0.4588	2.3366	80278	0.004714	6.33E-02
8	4	4	0.5	0.1963	0.2512	1.2794	43958	0.005380	4.33E-02
9	5	2	0.5	0.1963	0.2075	1.0567	36306	0.005620	$1.54 \mathrm{E}-02$
10	6	4	0.5	0.1963	0.1239	0.6310	21681	0.006349	$1.24 \mathrm{E}-02$
11	7	8	0.5	0.1963	0.0836	0.4256	14622	0.007002	$1.25 \mathrm{E}-02$
12	8	2	0.5	0.1963	0.2075	1.0567	36306	0.005620	$1.54 \mathrm{E}-02$
13	9	2	0.5	0.1963	0.4588	2.3366	80278	0.004714	6.33E-02
14									
15		Res	Res ${ }^{2}$						
16	Flow1	9.09E-05	8.26E-09						
17	Flow2	8.14E-05	6.62E-09						
18	Flow3	1.63E-05	2.65E-10						
19	Head1	-1.65E-04	2.73E-08						
20	Head2	-1.41E-05	2.00E-10						
21	Head3	3.94E-05	1.55E-09						
22									
23		Target	4.42E-08						

8.46 The horizontal and vertical components of the orbiter thruster can be computed as
$F_{H}=T_{S} \sin \theta \quad F_{V}=T_{S} \cos \theta$
A moment balance about point G can be computed as
$M=4 W_{B}-4 T_{B}-24 W_{S}+24 T_{S} \cos \theta-38 T_{S} \sin \theta$
Substituting the parameter values yields
$M=-20.068 \times 10^{6}+27 \times 10^{6} \cos \theta-42.75 \times 10^{6} \sin \theta$
This function can be plotted for the range of -5 to +5 radians

A valid root occurs at about 0.15 radians.
A MATLAB M-file called prob0846.m can be written to implement the Newton-Raphson method to solve for the root as
\% Shuttle Liftoff Engine Angle
\% Newton-Raphson Method of iteratively finding a single root

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

```
format long
% Constants
LGB = 4.0; LGS = 24.0; LTS = 38.0;
WS = 0.230E6; WB = 1.663E6;
TB = 5.3E6; TS = 1.125E6;
es = 0.5E-7; nmax = 200;
% Initial estimate in radians
x = 0.25
%Calculation loop
for i=1:nmax
    fx = LGB*WB-LGB*TB-LGS*WS+LGS*TS*Cos(x)-LTS*TS*sin(x);
    dfx = -LGS*TS*sin(x) -LTS*TS*Cos(x);
    xn=x-fx/dfx;
    %convergence check
    ea=abs ((xn-x)/xn);
    if (ea<=es)
        fprintf('convergence: Root = %f radians \n',xn)
        theta = (180/pi)*x;
        fprintf('Engine Angle = %f degrees \n',theta)
        break
    end
    x=xn;
    x
end
```

The program can be run with the result:

```
>> prob0846
x =
    0.15000000000000
x =
    0.15519036852630
x =
    0.15518449747863
convergence: Root = 0.155184 radians
Engine Angle = 8.891417 degrees
```

The program can be run for the case of the minimum payload, by changing W_{s} to 195,000 and running the M -file with the result:

```
>> prob0846
x =
    0.15000000000000
x =
    0.17333103912866
x =
    0.17321494968603
convergence: Root = 0.173215 radians
Engine Angle = 9.924486 degrees
```

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

