The Islamic University of Gaza

Faculty of Engineering First Semester (2012/2013)

Instructor: Dr. Khalil AlAstal T.A.: Eng. Yousife Al-Lahwani Eng. Basma Bashbash

Student Name: _____

Student No.: _____

Fluid Mechanics

FINAL EXAM

CLOSED BOOK <u>Allowable Time:</u> 2 hr 15min

Question No.	Given Mark	Max. Mark	Notes
Q1		6	
Q2		7	
Q3		7	
Q4		10	
Q5		10	
Total		40	

(6 Marks)

A. Scetch the Hydraulic Gradient Line (*HGL*) and Energy Grade Line (*EGL*) for the shown system (Note that the $D_1 > D_2$).

B . Define the stagnation point (demonstarte your answer by a sketch)

If viscous effects (head losses) are

neglected and the tank is large,

Calculate the theoretical flow rate from the tank.

The 6-cm-diameter water jet in figure shown strikes a plate containing a hole of 4cm diameter. Part of the jet passes through the hole, and part is deflected. **Determine the horizontal force required to hold the plate in place.**

•		

Student Name: _____

Student No.: _____

Question 4

In this system, d = 15 cm, D = 30cm, $\Delta z_1 = 1.8$ m, and $\Delta z_2 = 3.6$ m. The discharge of water in the system is 0.28m³/s.

- Is the machine a pump or a turbine?
- Calculate the pressure at point A ?
- Calculate the power of the machine. Neglect head losses.

	(10 Marks	3)	
- LILLI-LLLE Water	Same elevation	Δz_2	
	Machine	Δz_1	d B d

.....

(10 Marks)

A homogeneous wooden block of rectangular cross section, of sides "*a*" and "*b*", and of length "*L*" has a relative density of "*S*".

If the block is to float in water with its longest axis horizontal and the length "a" vertical as shown in the figure; find the ratio "b/a" to have a stable equiblirium.

