CHAPTER 1

1.1 For body weight:
$4.5+4.5+12+4.5+33+7 W=60$
$T W=1.5 \%$
For total body water:
$7.5+7.5+20+7.5+2.5+I W=100$
$I W=55 \%$

1.2

$Q_{\text {students }}=30$ ind $\times 80 \frac{\mathrm{~J}}{\text { ind s }} \times 15 \mathrm{~min} \times 60 \frac{\mathrm{~s}}{\min } \times \frac{\mathrm{kJ}}{1000 \mathrm{~J}}=2160 \mathrm{~kJ}$
$m=\frac{P V \mathrm{Mwt}}{R T}=\frac{(101.325 \mathrm{kPa})\left(10 \mathrm{~m} \times 8 \mathrm{~m} \times 3 \mathrm{~m}-30 \times 0.075 \mathrm{~m}^{3}\right)(28.97 \mathrm{~kg} / \mathrm{kmol})}{\left(8.314 \mathrm{kPam}^{3} /(\mathrm{kmolK})((20+273.15) \mathrm{K})\right.}=286.3424 \mathrm{~kg}$
$\Delta T=\frac{Q_{\text {students }}}{m C_{v}}=\frac{2160 \mathrm{~kJ}}{(286.3424 \mathrm{~kg})(0.718 \mathrm{~kJ} /(\mathrm{kg} \mathrm{K}))}=10.50615 \mathrm{~K}$
Therefore, the final temperature is $20+10.50615=30.50615^{\circ} \mathrm{C}$.
1.3 This is a transient computation. For the period from ending June 1:

Balance $=$ Previous Balance + Deposits - Withdrawals
Balance $=1512.33+220.13-327.26=1405.20$
The balances for the remainder of the periods can be computed in a similar fashion as tabulated below:

Date	Deposit	Withdrawal	Balance
1-May			$\$ 1512.33$
	$\$ 220.13$	$\$ 327.26$	
1-Jun			$\$ 1405.20$
	$\$ 216.80$	$\$ 378.61$	
1-Jul			$\$ 1243.39$
	$\$ 450.25$	$\$ 106.80$	
1-Aug			$\$ 1586.84$
	$\$ 127.31$	$\$ 350.61$	
1-Sep			$\$ 1363.54$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
1.4 $Q_{1, \text { in }}=Q_{2, \text { out }}+v_{3, \text { out }} A_{3}$

$$
A_{3}=\frac{Q_{1, \text { in }}-Q_{2, \text { out }}}{v_{3, \text { out }}}=\frac{40 \mathrm{~m}^{3} / \mathrm{s}-20 \mathrm{~m}^{3} / \mathrm{s}}{6 \mathrm{~m} / \mathrm{s}}=3.333 \mathrm{~m}^{2}
$$

$1.5 \sum \mathrm{M}_{\text {in }}-\sum \mathrm{M}_{\text {out }}=0$
Food + Drink + Air In + Metabolism $=$ Urine + Skin + Feces + Air Out + Sweat
Drink $=$ Urine + Skin + Feces + Air Out + Sweat - Food - Air In - Metabolism
Drink $=1.4+0.35+0.2+0.4+0.2-1-0.05-0.3=1.2 \mathrm{~L}$
$1.6 \quad v(t)=\frac{g m}{c}\left(1-e^{-(c / m) t}\right)$
jumper \#1: $v(t)=\frac{9.8(70)}{12}\left(1-e^{-(12 / 70) 10}\right)=46.8714$
jumper \#2: $46.8714=\frac{9.8(75)}{15}\left(1-e^{-(15 / 75) t}\right)$
$46.8714=49-49 e^{-0.2 t}$
$0.04344=e^{-0.2 t}$
$\ln 0.04344=-0.2 t$

$$
t=\frac{\ln 0.04344}{-0.2}=15.6818 \mathrm{~s}
$$

1.7 You are given the following differential equation with the initial condition, $v(t=0)=v(0)$,

$$
\frac{d v}{d t}=g-\frac{c}{m} v
$$

The most efficient way to solve this is with Laplace transforms

$$
s V(s)-v(0)=\frac{g}{s}-\frac{c}{m} V(s)
$$

Solve algebraically for the transformed velocity

$$
\begin{equation*}
V(s)=\frac{v(0)}{s+c / m}+\frac{g}{s(s+c / m)} \tag{1}
\end{equation*}
$$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

The second term on the right of the equal sign can be expanded with partial fractions

$$
\frac{g}{s(s+c / m)}=\frac{A}{s}+\frac{B}{s+c / m}
$$

Combining the right-hand side gives

$$
\frac{g}{s(s+c / m)}=\frac{A(s+c / m)+B s}{s(s+c / m)}
$$

By equating like terms in the numerator, the following must hold

$$
\begin{aligned}
& g=A \frac{c}{m} \\
& 0=A s+B s
\end{aligned}
$$

The first equation can be solved for $A=m g / c$. According to the second equation, $B=-A$. Therefore, the partial fraction expansion is

$$
\frac{g}{s(s+c / m)}=\frac{m g / c}{s}-\frac{m g / c}{s+c / m}
$$

This can be substituted into Eq. 1 to give

$$
V(s)=\frac{v(0)}{s+c / m}+\frac{m g / c}{s}-\frac{m g / c}{s+c / m}
$$

Taking inverse Laplace transforms yields

$$
v(t)=v(0) e^{-(c / m) t}+\frac{m g}{c}+\frac{m g}{c} e^{-(c / m) t}
$$

or collecting terms
$v(t)=v(0) e^{-(c / m) t}+\frac{m g}{c}\left(1-e^{-(c / m) t}\right)$
The first part is the general solution and the second part is the particular solution for the constant forcing function due to gravity.
1.8 At $t=10 \mathrm{~s}$, the analytical solution is 44.87 (Example 1.1). The relative error can be calculated with
absolute relative error $=\left|\frac{\text { analy tical }- \text { numerical }}{\text { analytical }}\right| \times 100 \%$
The numerical results are:

step	$\boldsymbol{v}(\mathbf{1 0})$	absolute relative error
2	47.9690	6.90%
1	46.3639	3.32%
0.5	45.6044	1.63%

The error versus step size can then be plotted as

Thus, halving the step size approximately halves the error.
1.9 (a) You are given the following differential equation with the initial condition, $v(t=0)=0$,
$\frac{d v}{d t}=g-\frac{c^{\prime}}{m} v^{2}$
Multiply both sides by m / c^{\prime}
$\frac{m}{c^{\prime}} \frac{d v}{d t}=\frac{m}{c^{\prime}} g-v^{2}$
Define $a=\sqrt{m g / c^{\prime}}$
$\frac{m}{c^{\prime}} \frac{d v}{d t}=a^{2}-v^{2}$
Integrate by separation of variables,

$$
\int \frac{d v}{a^{2}-v^{2}}=\int \frac{c^{\prime}}{m} d t
$$

A table of integrals can be consulted to find that
PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$$
\int \frac{d x}{a^{2}-x^{2}}=\frac{1}{a} \tanh ^{-1} \frac{x}{a}
$$

Therefore, the integration yields

$$
\frac{1}{a} \tanh ^{-1} \frac{v}{a}=\frac{c^{\prime}}{m} t+C
$$

If $v=0$ at $t=0$, then because $\tanh ^{-1}(0)=0$, the constant of integration $C=0$ and the solution is

$$
\frac{1}{a} \tanh ^{-1} \frac{v}{a}=\frac{c^{\prime}}{m} t
$$

This result can then be rearranged to yield

$$
v=\sqrt{\frac{g m}{c^{\prime}}} \tanh \left(\sqrt{\frac{g c^{\prime}}{m}} t\right)
$$

(b) Using Euler's method, the first two steps can be computed as

$$
\begin{aligned}
& v(2)=0+\left[9.8-\frac{0.225}{68.1}(0)^{2}\right] 2=19.6 \\
& v(4)=19.6+\left[9.8-\frac{0.225}{68.1}(19.6)^{2}\right] 2=36.6615
\end{aligned}
$$

The computation can be continued and the results summarized and plotted as:

\boldsymbol{t}	\boldsymbol{v}	$\boldsymbol{d} \boldsymbol{v} / \boldsymbol{d} \boldsymbol{t}$
0	0	9.8
2	19.6	8.53075
4	36.6615	5.35926
6	47.3800	2.38305
8	52.1461	0.81581
10	53.7777	0.24479
12	54.2673	0.07002
∞	54.4622	

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Note that the analytical solution is included on the plot for comparison.
1.10 Before the chute opens $(t<10)$, Euler's method can be implemented as

$$
v(t+\Delta t)=v(t)+\left[9.8-\frac{10}{80} v(t)\right] \Delta t
$$

After the chute opens ($t \geq 10$), the drag coefficient is changed and the implementation becomes

$$
v(t+\Delta t)=v(t)+\left[9.8-\frac{50}{80} v(t)\right] \Delta t
$$

Here is a summary of the results along with a plot:

Chute closed			Chute opened		
\boldsymbol{t}	\boldsymbol{v}	$\boldsymbol{d} \boldsymbol{v} / \boldsymbol{d} \boldsymbol{t}$	\boldsymbol{t}	\boldsymbol{v}	$\boldsymbol{d} \boldsymbol{v} / \boldsymbol{d} \boldsymbol{t}$
0	-20.0000	12.3000	10	52.5134	-23.0209
1	-7.7000	10.7625	11	29.4925	-8.6328
2	3.0625	9.4172	12	20.8597	-3.2373
3	12.4797	8.2400	13	17.6224	-1.2140
4	20.7197	7.2100	14	16.4084	-0.4552
5	27.9298	6.3088	15	15.9531	-0.1707
6	34.2385	5.5202	16	15.7824	-0.0640
7	39.7587	4.8302	17	15.7184	-0.0240
8	44.5889	4.2264	18	15.6944	-0.0090
9	48.8153	3.6981	19	15.6854	-0.0034
			20	15.6820	-0.0013

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

1.11 (a) The force balance can be written as:
$m \frac{d v}{d t}=-m g(0) \frac{R^{2}}{(R+x)^{2}}+c v$
Dividing by mass gives
$\frac{d v}{d t}=-g(0) \frac{R^{2}}{(R+x)^{2}}+\frac{c}{m} v$
(b) Recognizing that $d x / d t=v$, the chain rule is
$\frac{d v}{d t}=v \frac{d v}{d x}$
Setting drag to zero and substituting this relationship into the force balance gives

$$
\frac{d v}{d x}=-\frac{g(0)}{v} \frac{R^{2}}{(R+x)^{2}}
$$

(c) Using separation of variables
$v d v=-g(0) \frac{R^{2}}{(R+x)^{2}} d x$
Integrating gives
$\frac{v^{2}}{2}=g(0) \frac{R^{2}}{R+x}+C$
Applying the initial condition yields

$$
\frac{v_{0}^{2}}{2}=g(0) \frac{R^{2}}{R+0}+C
$$

which can be solved for $C=v_{0}^{2} / 2-g(0) R$, which can be substituted back into the solution to give
$\frac{v^{2}}{2}=g(0) \frac{R^{2}}{R+x}+\frac{v_{0}^{2}}{2}-g(0) R$
or
$v= \pm \sqrt{v_{0}^{2}+2 g(0) \frac{R^{2}}{R+x}-2 g(0) R}$
Note that the plus sign holds when the object is moving upwards and the minus sign holds when it is falling.
(d) Euler's method can be developed as

$$
v\left(x_{i+1}\right)=v\left(x_{i}\right)+\left[-\frac{g(0)}{v\left(x_{i}\right)} \frac{R^{2}}{\left(R+x_{i}\right)^{2}}\right]\left(x_{i+1}-x_{i}\right)
$$

The first step can be computed as

$$
v(10,000)=1,400+\left[-\frac{9.8}{1,400} \frac{\left(6.37 \times 10^{6}\right)^{2}}{\left(6.37 \times 10^{6}+0\right)^{2}}\right](10,000-0)=1,400+(-0.007) 10,000=1,330
$$

The remainder of the calculations can be implemented in a similar fashion as in the following table

\boldsymbol{x}	\boldsymbol{v}	$\boldsymbol{d} \boldsymbol{v} / \boldsymbol{d} \boldsymbol{x}$	\boldsymbol{v}-analytical
0	1400.000	-0.00700	1400.000
10000	1330.000	-0.00735	1328.272
20000	1256.547	-0.00775	1252.688
30000	1179.042	-0.00823	1172.500
40000	1096.701	-0.00882	1086.688
50000	1008.454	-0.00957	993.796
60000	912.783	-0.01054	891.612
70000	807.413	-0.01188	776.473
80000	688.661	-0.01388	641.439
90000	549.864	-0.01733	469.650
100000	376.568	-0.02523	174.033

For the analytical solution, the value at $10,000 \mathrm{~m}$ can be computed as

$$
v=\sqrt{1,400^{2}+2(9.8) \frac{\left(6.37 \times 10^{6}\right)^{2}}{\left(6.37 \times 10^{6}+10,000\right)^{2}}-2(9.8)\left(6.37 \times 10^{6}\right)}=1,328.272
$$

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

The remainder of the analytical values can be implemented in a similar fashion as in the last column of the above table. The numerical and analytical solutions can be displayed graphically.

1.12 (a) The first two steps are

$$
\begin{aligned}
& c(0.1)=10-0.2(10) 0.1=9.8 \mathrm{~Bq} / \mathrm{L} \\
& c(0.2)=9.8-0.2(9.8) 0.1=9.604 \mathrm{~Bq} / \mathrm{L}
\end{aligned}
$$

The process can be continued to yield

\boldsymbol{t}	\boldsymbol{c}	$\boldsymbol{d} \boldsymbol{c} / \boldsymbol{d} \boldsymbol{t}$
0	10.0000	-2.0000
0.1	9.8000	-1.9600
0.2	9.6040	-1.9208
0.3	9.4119	-1.8824
0.4	9.2237	-1.8447
0.5	9.0392	-1.8078
0.6	8.8584	-1.7717
0.7	8.6813	-1.7363
0.8	8.5076	-1.7015
0.9	8.3375	-1.6675
1	8.1707	-1.6341

(b) The results when plotted on a semi-log plot yields a straight line

The slope of this line can be estimated as

$$
\frac{\ln (8.1707)-\ln (10)}{1}=-0.20203
$$

Thus, the slope is approximately equal to the negative of the decay rate.
1.13 The first two steps yield

$$
\begin{aligned}
& y(0.5)=0+\left[3 \frac{500}{1200} \sin ^{2}(0)-\frac{500}{1200}\right] 0.5=0+[0-0.41667] 0.5=-0.20833 \\
& y(1)=-0.20833+\left[\sin ^{2}(0.5)-0.41667\right] 0.5=-0.27301
\end{aligned}
$$

The process can be continued to give

\boldsymbol{t}	\boldsymbol{y}	$\boldsymbol{d} \boldsymbol{y} / \boldsymbol{d} \boldsymbol{t}$	\boldsymbol{t}	\boldsymbol{y}	$\boldsymbol{d y} / \boldsymbol{d} \boldsymbol{t}$
0	0.00000	-0.41667	5.5	1.27629	0.20557
0.5	-0.20833	-0.12936	6	1.37907	-0.31908
1	-0.27301	0.46843	6.5	1.21953	-0.35882
1.5	-0.03880	0.82708	7	1.04012	0.12287
2	0.37474	0.61686	7.5	1.10156	0.68314
2.5	0.68317	0.03104	8	1.44313	0.80687
3	0.69869	-0.39177	8.5	1.84656	0.38031
3.5	0.50281	-0.26286	9	2.03672	-0.20436
4	0.37138	0.29927	9.5	1.93453	-0.40961
4.5	0.52101	0.77779	10	1.72973	-0.04672
5	0.90991	0.73275			

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

1.14 The first two steps yield

$$
\begin{aligned}
& y(0.5)=0+\left[3 \frac{500}{1200} \sin ^{2}(0)-\frac{300(1+0)^{1.5}}{1200}\right] 0.5=0+[0-0.25] 0.5=-0.125 \\
& y(1)=-0.125+\left[\sin ^{2}(0.5)-\frac{300(1-0.125)^{1.5}}{1200}\right] 0.5=-0.08366
\end{aligned}
$$

The process can be continued to give

\boldsymbol{t}	\boldsymbol{y}	$\boldsymbol{d} \boldsymbol{y} / \boldsymbol{d} \boldsymbol{t}$
0	0.00000	-0.25000
0.5	-0.12500	0.08269
1	-0.08366	0.66580
1.5	0.24924	0.89468
2	0.69658	0.48107
2.5	0.93711	-0.22631
3	0.82396	-0.59094
3.5	0.52849	-0.31862
4	0.36918	0.31541
4.5	0.52689	0.72277
5	0.88827	0.50073
5.5	1.13864	-0.15966
6	1.05881	-0.64093
6.5	0.73834	-0.51514
7	0.48077	0.08906
7.5	0.52530	0.62885
8	0.83973	0.59970
8.5	1.13958	0.01457
9	1.14687	-0.57411
9.5	0.85981	-0.62702
10	0.54630	-0.11076

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

1.15 The volume of the droplet is related to the radius as

$$
\begin{equation*}
V=\frac{4 \pi r^{3}}{3} \tag{1}
\end{equation*}
$$

This equation can be solved for radius as

$$
\begin{equation*}
r=\sqrt[3]{\frac{3 V}{4 \pi}} \tag{2}
\end{equation*}
$$

The surface area is

$$
\begin{equation*}
A=4 \pi r^{2} \tag{3}
\end{equation*}
$$

Equation (2) can be substituted into Eq. (3) to express area as a function of volume
$A=4 \pi\left(\frac{3 V}{4 \pi}\right)^{2 / 3}$
This result can then be substituted into the original differential equation,

$$
\begin{equation*}
\frac{d V}{d t}=-k 4 \pi\left(\frac{3 V}{4 \pi}\right)^{2 / 3} \tag{4}
\end{equation*}
$$

The initial volume can be computed with Eq. (1),

$$
V=\frac{4 \pi r^{3}}{3}=\frac{4 \pi(3)^{3}}{3}=113.0973 \mathrm{~mm}^{3}
$$

Euler's method can be used to integrate Eq. (4). Here are the beginning and last steps

\boldsymbol{t}	\boldsymbol{V}	$\boldsymbol{d} \boldsymbol{V} / \boldsymbol{d} \boldsymbol{t}$
0	113.0973	-11.3097
0.25	110.2699	-11.1204
0.5	107.4898	-10.9327
0.75	104.7566	-10.7466
1	102.07	-10.5621
\bullet		
\bullet		
\bullet		
9	38.29357	-5.49416
9.25	36.92003	-5.36198
9.5	35.57954	-5.2314
9.75	34.27169	-5.1024
10	32.99609	-4.97499

A plot of the results is shown below:

Eq. (2) can be used to compute the final radius as

$$
r=\sqrt[3]{\frac{3(32.99609)}{4 \pi}}=1.9897
$$

Therefore, the average evaporation rate can be computed as
$k=\frac{(3-1.9897) \mathrm{mm}}{10 \mathrm{~min}} \frac{60 \mathrm{~min}}{\mathrm{hr}}=0.10103 \frac{\mathrm{~mm}}{\min }$
which is approximately equal to the given evaporation rate.
1.16 The first two steps can be computed as

$$
\begin{aligned}
& T(1)=68+[-0.017(68-21)] 1=68+(-0.799) 1=67.201 \\
& T(2)=67.201+[-0.017(67.201-21)] 1=68+(-0.78542) 1=66.41558
\end{aligned}
$$

The remaining results are displayed below along with a plot

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

\boldsymbol{t}	\boldsymbol{T}	$\boldsymbol{d} \boldsymbol{T} / \boldsymbol{d} \boldsymbol{t}$
0	68.00000	-0.79900
1	67.20100	-0.78542
2	66.41558	-0.77206
3	65.64352	-0.75894
4	64.88458	-0.74604
5	64.13854	-0.73336
6	63.40519	-0.72089
7	62.68430	-0.70863
8	61.97566	-0.69659
9	61.27908	-0.68474
10	60.59433	-0.67310

1.17 (a) The solution of the differential equation is

$$
N=N_{0} e^{\mu t}
$$

The doubling time can be computed as the time when $N=2 N_{0}$,
$2 N_{0}=N_{0} e^{\mu(20)}$
$\mu=\frac{\ln 2}{20 \mathrm{hrs}}=\frac{0.693}{20 \mathrm{hrs}}=0.034657 / \mathrm{lr}$
(b) The volume of an individual spherical cell is
cell volume $=\frac{\pi d^{3}}{6}$
The total volume is

$$
\begin{equation*}
\text { volume }=\frac{\pi d^{3}}{6} N \tag{2}
\end{equation*}
$$

The rate of change of N is defined as

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

$$
\begin{equation*}
\frac{d N}{d t}=\mu N \tag{3}
\end{equation*}
$$

If $N=N_{0}$ at $t=0$, Eq. 3 can be integrated to give

$$
\begin{equation*}
N=N_{0} e^{\mu t} \tag{4}
\end{equation*}
$$

Therefore, substituting (4) into (2) gives an equation for volume

$$
\begin{equation*}
\text { volume }=\frac{\pi d^{3}}{6} N_{0} e^{\mu t} \tag{5}
\end{equation*}
$$

(c) This equation can be solved for time
$t=\frac{\ln \frac{6 \times \text { volume }}{\pi d^{3} N_{0}}}{\mu}$
The volume of a $500 \mu \mathrm{~m}$ diameter tumor can be computed with Eq. 2 as $65,449,847$. Substituting this value along with $d=20 \mu \mathrm{~m}, N_{0}=1$ and $\mu=0.034657 / \mathrm{hr}$ gives

$$
\begin{equation*}
t=\frac{\ln \left(\frac{6 \times 65,449,847}{\pi 20^{3}(1)}\right)}{0.034657}=278.63 \mathrm{hr}=11.6 \mathrm{~d} \tag{6}
\end{equation*}
$$

1.18 Continuity at the nodes can be used to determine the flows as follows:

$$
\begin{aligned}
& Q_{1}=Q_{2}+Q_{3}=0.6+0.4=1 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \\
& Q_{10}=Q_{1}=1 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \\
& Q_{9}=Q_{10}-Q_{2}=1-0.6=0.4 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \\
& Q_{4}=Q_{9}-Q_{8}=0.4-0.3=0.1 \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \\
& Q_{5}=Q_{3}-Q_{4}=0.4-0.1=0.3 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
\end{aligned}
$$

$$
Q_{6}=Q_{5}-Q_{7}=0.3-0.2=0.1 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

Therefore, the final results are

